-
摘要: 针对多峰优化问题, 本文结合多尺度量子谐振子算法的全局优化特性提出了基于划分的多尺度量子谐振子算法.对定义域进行合理均匀划分, 根据划分区域长度构建初始基态高斯曲线, 随着标准差衰减高斯曲线逐渐收敛, 从而在各个区域内快速搜索到极值点.对于实际函数的维度和极值数不同, 本文提出固定分辨率策略和多级分辨率策略来解决实际问题, 通过寻优精确性、全极值点寻优和全局多峰优化三个角度进行实验, 对比蚁群算法、差分进化算法等主流群智能算法, 可以表明该算法参数设置简单, 具有很好的寻优准确性、快速收敛性和记忆性.Abstract: To solve the problem of multimodal optimization, a partition-based multi-scale quantum harmonic oscillator algorithm (MQHOA) is proposed depending on MQHOA's global optimization characteristic. It divides reasonably a domain into uniform areas, and then Gauss curves with ground state can be constructed according to the lengths of these uniform areas. With the attenuation of standard deviation, the Gauss curves will converge gradually, thus, extreme points can be found quickly. In addition, two strategies comprising fixed wavelength resolution and muti-level resolution are used for practical problems. Experiments are carried out from three aspects including optimization's accuracy, all extremal points optimization and global multimodal optimization. Compared with the ant colony algorithm, differential evolution algorithms and other mainstream swarm intelligence algorithms, the algorithm has, in addition to its simpleness on setting parameters, superior optimization accuracy, fast convergence and memory property.
-
表 1 一维震荡函数两种策略寻优性能比较
Table 1 Comparison of two strategies for one dimensional shock function
K0 λ0 K1 CN1 TC1 K2 CN2 TC2 2 0.1 3.9 10 0.0030 4.0 4 0.0038 12 0.01 13.9 100 0.0180 11.9 10 0.0084 46 0.001 47.7 1 000 0.1499 41.6 31 0.0348 156 0.0001 157.0 10 000 1.312 144.2 100 0.167 500 0.00001 493.2 100 000 10.374 461.0 316 0.767 1592 0.000001 1515.0 1 000 000 95.614 1 419.6 1 000 3.067 表 2 二维Griewank函数两种策略寻优性能比较
Table 2 Comparison of two strategies for two dimensional Griewank function
K0 λ0 K1 CN1 TC1 K2 CN2 TC2 1 369 20 75.7 10 0.051 40.3 4 0.036 1 369 10 307.8 400 0.183 231.2 10 0.291 1 369 5 1 049.2 1 600 0.726 617.5 31 1.472 1 369 2 1 333.4 10 000 4.078 670.2 100 1.657 1 369 1 1 340.5 40 000 15.312 783.0 316 9.64 1 369 0.5 1 353.10 160 000 57.272 1 924.1 1 000 21.04 表 3 P-MQHOA与蚁群算法全极值搜索比较
Table 3 Comparison of total-extremum-searching of P-MQHOA and ant colony algorithm
NO. P-MQHOA
(x1, x2, f/(x1, x2))ANT 1 (-0.878093608, -0.878093599, 3.53255484) (-0.8781, -0.8781, 3.5326) 2 (-0.878093550, -0.526852857, 3.042136418) -0.8737, -0.5310, 3.0362 3 (-0.878093617, -0.17561706, 2.796928371) (-0.8725, -0.1810, 2.7873) 4 (-0.878093568, 0.175617049, 2.796928371) (-0.8725, -0.5310, 3.0362) 5 (-0.878093628, 0.526852825, 3.042136418) (-0.8700, 0.5175, 3.0176) 6 (-0.878093611, 0.878093569, 3.53255484) (-0.8675, 0.8675, 3.4966) 7 (-0.52685281, -0.878093573, 3.042136418) (-0.5310, -0.8737, 3.0362) 8 (-0.526852791, -0.526852812, 2.551717996) (-0.5268, -0.5268, 2.5517) 9 (-0.526852794, -0.175617069, 2.306509949) (-0.5352, -0.1773, 2.3056) 10 (-0.526852803, 0.17561705, 2.306509949) (-0.5215, 0.1700, 2.2969) 11 (-0.526852866, 0.526852858, 2.551717996) (-0.5200, 0.5200, 2.5367) 12 (-0.526852827, 0.878093628, 3.042136418) (-0.5175, 0.8700, 3.0176) 13 (-0.175617027, -0.878093592, 2.796928371) (-0.1810, -0.8725, 2.7873) 14 (-0.175617075, -0.526852805, 2.306509949) (-0.1773, -0.5252, 2.3056) 15 (-0.175617028, -0.175617046, 2.061301903) (-0.1756, -0.1756, 2.0613) 16 (-0.175617006, 0.175617028, 2.061301903) (-0.1756, 0.1756, 2.0559) 17 (-0.175617067, 0.526852847, 2.306509949) (-0.1700, 0.5215, 2.2969) 18 (-0.175617056, 0.878093620, 2.796928371) (-0.1675, 0.8700, 2.7759) 19 (0.175617041, -0.878093592, 2.796928371) (0.1675, -0.8700, 2.7759) 20 (0.175617068, -0.526852815, 2.306509949) (0.1700, -0.5215, 2.2969) 21 (0.175617061, -0.175617041, 2.061301903) (0.1715, -0.1715, 2.0559) 22 (0.175617051, 0.175617057, 2.061301903) (0.1756, 0.1756, 2.0613) 23 (0.175617054, 0.526852783, 2.306509949) (0.1773, 0.5252, 2.3056) 24 (0.175617039, 0.878093590, 2.796928371) (0.1810, 0.8725, 2.7873) 25 (0.526852762, -0.878093542, 3.042136418) (0.5175, -0.8700, 3.0176) 26 (0.526852876, -0.526852885, 2.551717996) (0.5200, -0.5200, 2.5367) 27 (0.526852785, -0.175617064, 2.306509949) (0.5215, -0.1700, 2.2969) 28 (0.526852823, 0.175617064, 2.306509949) (0.5252, 0.1773, 2.3056) 29 (0.52685278, 0.52685282, 2.551717996) (0.5268, 0.5268, 2.5517) 30 (0.526852781, 0.878093598, 3.042136418) (0.5310, 0.8737, 3.0362) 31 (0.878093552, -0.878093598, 3.53255484) (0.8675, -0.8675, 3.4966) 32 (0.87809359, -0.526852814, 3.042136418) (0.8700, -0.5175, 3.0176) 33 (0.878093528, -0.175617038, 2.796928371) (0.8700, -0.1675, 2.7759) 34 (0.878093604, 0.175617041, 2.796928371) (0.8725, 0.1810, 2.7873) 35 (0.878093617, 0.526852807, 3.042136418) (0.8737, 0.5310, 3.0362) 36 (0.878093597, 0.878093581, 3.53255484) (0.8781, 0.8781, 3.5326) 表 4 二维Griewank函数极值分布拟合结果
Table 4 Fitting results of extremum values0 distribution of Griewank function
Func. No. ε P-MQHOA MOBi-DE CDE SDE S-CMA CMA SPSO PER-PSO r2pso r3pso Niching-based BNPGA
NSGA-Ⅱf1 1 0.05 1(4) 1(4) 1(4) 1(4) 1(4) 1(4) 0.44(12) 0.82(10) 0.76(11) 0.84(9) 1(4) 1(4) f2 1 0.05 1(5) 1(5) 1(5) 1(5) 1(5) 1(5) 0.40(12) 1(5) 0.88(11) 0.96(10) 1(5) 1(5) f3 2 1E-6 2(2.5) 2(2.5) 2(2.5) 1.96(5) 1.92(7) 1.95(6) 1.38(9) 0.8(10) 0.48(12) 0.6(11) 2(2.5) 1.5(8) f4 5 1E-6 5(1.5) 5(1.5) 3.84(10) 4.70(6) 0.04(12) 0.6(11) 4.88(3) 4.84(4) 4.68(7) 4.74(5) 4.37(9) 4.64(8) f5 1 1E-6 1(6) 1(6) 0.72(12) 1(6) 1(6) 1(6) 1(6) 1(6) 1(6) 1(6) 1(6) 1(6) f6 5 1E-6 5(1.5) 5(1.5) 3.96(9) 4.6(7) 0(12) 0.64(11) 4.92(4) 4.96(3) 4.88(5) 4.72(6) 4.52(8) 3.56(10) f7 1 1E-6 1(5.5) 1(5.5) 0.8(11) 1(5.5) 1(5.5) 1(5.5) 1(5.5) 1(5.5) 1(5.5) 1(5.5) 0.6(12) 1(5.5) f8 4 5E-4 4(1.5) 4(1.5) 0.32(12) 3.72(4.5) 3.72(4.5) 3.43(7) 0.84(11) 3.68(6) 2.92(9) 2.76(10) 3.74(3) 3.34(8) f9 2 1E-6 2(3) 2(3) 0.04(12) 2(3) 1.6(7) 2(3) 0.08(11) 1.96(6) 1.44(9) 1.56(8) 2(3) 1.24(10) f10 1 1E-6 1(2) 1(2) 0.52(9) 0.32(10) 0.06(12) 0.18(11) 0.56(8) 1(2) 0.88(6) 0.76(7) 0.94(5) 0.96(4) f11 18 5 E-2 17.5(1) 17.4(2) 11.39(12) 12.78(9) 12.04(10) 12(11) 14.36(7) 15.61(6) 15.95(5) 16.45(4) 16.94(3) 13.72(8) f12 6 0.05 6(1.5) 6(1.5) 5.56(6.5) 4.88(12) 5.56(6.5) 5.81(3) 5.6(5) 5.28(10) 5.52(8) 5.16(11) 5.36(9) 5.71(4) f13 36 1E-3 35.6(1) 35.4(2) 33.8(3) 23.8(7) 24.6(6) 23.6(8) 25.72(5) 21.8(12) 22.4(9) 22.2(10) 22.05(11) 31.76(4) f14 218 1E-3 163.56(2) 175.88(1) 152(3) 50.6(8) 0.6(12) 32.5(11) 70.12(6) 68.6(7) 40.6(10) 45.4(9) 92.76(5) 121.54(4) Total ranks 38 39 111 92 109.5 102.5 104.5 92.5 113.5 111.5 85.5 88.5 表 5 P-MQHOA算法与MOBi-DE算法时间消耗 (s)
Table 5 Time consumption of P-MQHOA algorithm and MOBi-DE algorithm (s)
Func. f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 P-MQHOA 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.1 0.1 0.1 1.76 0.28 4.32 12.14 MOBi-DE 1.56 1.46 2.82 2.64 1.54 2.04 1.68 18.34 15.28 41.24 46.28 36.49 51.74 72.36 -
[1] Chang Y W, Yu G F. Multi-Sub-Swarm PSO algorithm for multimodal function optimization. In:Proceedings of the 2014 International Conference on Computer Science and Information Technology. India:Springer, 2014. 687-695 [2] Qu B Y, Suganthan P N, Das S. A distance-based locally informed particle swarm model for multimodal optimization. IEEE Transactions on Evolutionary Computation, 2013, 17(3):387-402 doi: 10.1109/TEVC.2012.2203138 [3] Shih C J, Teng T L, Chen S K. A niche-related particle swarm meta-heuristic algorithm for multimodal optimization. In:Proceedings of the 2nd International Conference on Intelligent Technologies and Engineering Systems. Switzerland, Germany:Springer, 2014. 313-321 [4] Agrawal S, Sanjay S. FRPSO:fletcher-reeves based particle swarm optimization for multimodal function optimization. Soft Computing, 2014, 18(11):2227-2243 doi: 10.1007/s00500-013-1196-2 [5] Qu B Y, Suganthan P N, Liang J J. Differential evolution with neighborhood mutation for multimodal optimization. IEEE Transactions on Evolutionary Computation, 2012, 16(5):601-614 doi: 10.1109/TEVC.2011.2161873 [6] Basak A, Das S, Tan K C. Multimodal optimization using a biobjective differential evolution algorithm enhanced with mean distance-based selection. IEEE Transactions on Evolutionary Computation, 2013, 17(5):666-685 doi: 10.1109/TEVC.2012.2231685 [7] Pang C Y, Li X, Liu H, Wang Y F, Hu B Q. Applying ant colony optimization to search all extreme points of function. In:Proceedings of the 5th IEEE Conference on Industrial Electronics and Applications. Taichung, China:IEEE, 2010. 1517-1521 [8] Dasgupta B, Divya K, Mehta V K, Deb K. RePAMO:recursive perturbation approach for multimodal optimization. Engineering Optimization, 2013, 45(9):1073-1090 doi: 10.1080/0305215X.2012.725050 [9] Vidya R C, Phaneendra H D, Shivakumar M S. Quantum algorithms and hard problems. In:Proceedings of 5th IEEE International Conference on Cognitive Informatics. Washington, DC, USA:IEEE, 2006. 783-787 [10] 王鹏.云计算的关键技术与应用实例.北京:人民邮电出版社, 2010. 168-194Wang Peng. The Key Technology and Application Examples of Cloud Computing. Beijing:People's Posts and Telecommunications Press, 2010. 168-194 [11] 王鹏, 黄焱, 任超, 郭又铭.多尺度量子谐振子高维函数全局优化算法.电子学报, 2013, 41(12):2468-2473 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201312023.htmWang Peng, Huang Yan, Ren Chao, Guo You-Ming. Multi-Scale quantum harmonic oscillator for high-dimensional function global optimization algorithm. Acta Electronica Sinica, 2013, 41(12):2468-2473 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201312023.htm [12] 王鹏, 黄焱.多尺度量子谐振子优化算法物理模型.计算机科学与探索, 2015, 9(10):1271-1280 http://www.cnki.com.cn/Article/CJFDTOTAL-KXTS201510014.htmWang Peng, Huang Yan. Physical model of multi-scale quantum harmonic oscillator optimization algorithm. Journal of Frontiers of Computer Science and Technology, 2015, 9(10):1271-1280 http://www.cnki.com.cn/Article/CJFDTOTAL-KXTS201510014.htm [13] 肖黎彬, 王鹏, 陈磊, 郭又铭.量子谐振子优化算法.计算机应用, 2013, 32(S2):1-4, 44 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJY2012S2000.htmXiao Li-Bin, Wang Peng, Chen Lei, Guo You-Ming. Quantum harmonic oscillator optimization algorithm. Journal of Computer Applications, 2013, 32(S2):1-4, 44 http://www.cnki.com.cn/Article/CJFDTOTAL-JSJY2012S2000.htm [14] Mallat S G. A theory for multiresolution signal decomposition:the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7):674-693 doi: 10.1109/34.192463 [15] 左斌, 胡云安, 施建洪.极值搜索算法的研究与进展.海军航空工程学院学报, 2006, 21(6):611-617 http://www.cnki.com.cn/Article/CJFDTOTAL-HJHK200606003.htmZuo Bin, Hu Yun-An, Shi Jian-Hong. Research and development of extremum seeking algorithm. Journal of Naval Aeronautical Engineering Institute, 2006, 21(6):611-617 http://www.cnki.com.cn/Article/CJFDTOTAL-HJHK200606003.htm 期刊类型引用(11)
1. 王治和,常筱卿,杜辉. 基于万有引力的自适应近邻传播聚类算法. 计算机应用. 2021(05): 1337-1342 . 百度学术
2. 邱保志,张瑞霖,李向丽. 基于过滤模型的聚类算法. 控制与决策. 2020(05): 1091-1101 . 百度学术
3. 征察,吉立新,高超,李邵梅,吴翼腾. 基于成对约束的偏标记数据消歧算法. 自动化学报. 2020(07): 1367-1377 . 本站查看
4. 钱雪忠,王卫涛. 多维空间可调整的近邻传播聚类算法. 计算机科学与探索. 2019(01): 116-127 . 百度学术
5. 曹愈远,张博文,李艳军. AP聚类改进免疫算法用于航空发动机故障诊断. 航空动力学报. 2019(08): 1795-1804 . 百度学术
6. 刘璧钺,赵章焰. 基于改进LSD和AP聚类的路径边缘识别策略. 图学学报. 2019(05): 915-924 . 百度学术
7. 刘自豪,张斌,祝宁,唐慧林. 基于改进AP聚类算法的自学习应用层DDoS检测方法. 计算机研究与发展. 2018(06): 1236-1246 . 百度学术
8. 赵昱,陈琴,苏一丹,陈慧姣. 基于邻域相似度的近邻传播聚类算法. 计算机工程与设计. 2018(07): 1883-1888 . 百度学术
9. 王卫涛,钱雪忠,曹文彬. 自适应参数调整的近邻传播聚类算法. 小型微型计算机系统. 2018(06): 1305-1311 . 百度学术
10. 李晓庆,唐昊,司加胜,苗刚中. 面向混合属性数据集的改进半监督FCM聚类方法. 自动化学报. 2018(12): 2259-2268 . 本站查看
11. 陈雷,肖创柏,禹晶,王真理,李学良. 基于相似性传播聚类与主成分分析的断层识别方法. 石油地球物理勘探. 2017(04): 826-833+627-628 . 百度学术
其他类型引用(9)
-