2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不确定系统改进的鲁棒协方差交叉融合稳态Kalman预报器

王雪梅 刘文强 邓自立

王雪梅, 刘文强, 邓自立. 不确定系统改进的鲁棒协方差交叉融合稳态Kalman预报器. 自动化学报, 2016, 42(8): 1198-1206. doi: 10.16383/j.aas.2016.c150410
引用本文: 王雪梅, 刘文强, 邓自立. 不确定系统改进的鲁棒协方差交叉融合稳态Kalman预报器. 自动化学报, 2016, 42(8): 1198-1206. doi: 10.16383/j.aas.2016.c150410
WANG Xue-Mei, LIU Wen-Qiang, DENG Zi-Li. Modified Robust Covariance Intersection Fusion Steady-state Kalman Predictor for Uncertain Systems. ACTA AUTOMATICA SINICA, 2016, 42(8): 1198-1206. doi: 10.16383/j.aas.2016.c150410
Citation: WANG Xue-Mei, LIU Wen-Qiang, DENG Zi-Li. Modified Robust Covariance Intersection Fusion Steady-state Kalman Predictor for Uncertain Systems. ACTA AUTOMATICA SINICA, 2016, 42(8): 1198-1206. doi: 10.16383/j.aas.2016.c150410

不确定系统改进的鲁棒协方差交叉融合稳态Kalman预报器

doi: 10.16383/j.aas.2016.c150410
基金项目: 

黑龙江大学研究生创新科研项目 YJSCX2015-002HLJU

国家自然科学基金 60874063, 60374026

详细信息
    作者简介:

    王雪梅 黑龙江大学电子工程学院博士研究生. 主要研究方向为多传感器信息融合和鲁棒Kalman 滤波. E-mail: dengzili889@163.com

    刘文强 黑龙江大学电子工程学院博士研究生. 主要研究方向为多传感器信息融合和鲁棒Kalman 滤波. E-mail: dengzili890@163.com

    通讯作者:

    邓自立 黑龙江大学电子工程学院教授. 主要研究方向为多传感器信息融合和鲁棒Kalman 滤波. E-mail: dzl@hlju.edu.cn

  • 中图分类号: 

Modified Robust Covariance Intersection Fusion Steady-state Kalman Predictor for Uncertain Systems

Funds: 

Postgraduate Innovation Project of Heilongjiang Province YJSCX2015-002HLJU

National Natural Science Foundation of China 60874063, 60374026

More Information
    Author Bio:

    WANG Xue-Mei Ph. D. candi-date at the Electronic Engineering Col-lege, Heilongjiang University. Her re-search interest covers multisensor infor-mation fusion and robust Kalman ˉltering

    LIU Wen-Qiang Ph. D. candidate at the Electronic Engineering College, Heilongjiang University. His research interest covers multisensor information fusion and robust Kalman ˉltering

    Corresponding author: DENG Zi-Li Professor at the Electronic Engineering College, Hei-longjiang University. His research in-terest covers multisensor information fusion and robust Kalman filtering
  • 摘要: 针对带随机参数和噪声方差两者不确定性的线性离散多传感器系统,利用虚拟噪声补偿随机参数不确定性,原系统可转化为仅带不确定噪声方差的系统.根据极大极小鲁棒估值原理,用Lyapunov方程方法提出局部鲁棒稳态Kalman预报器及其误差方差最小上界,并利用保守的局部预报误差互协方差,提出改进的鲁棒协方差交叉(Covariance intersection,CI)融合稳态Kalman预报器及其误差方差最小上界.克服了原始CI融合方法要求假设已知局部估值及它们的保守误差方差的缺点和融合误差方差上界具有较大保守性的缺点.证明了鲁棒局部和融合预报器的鲁棒性,并证明了改进的CI融合器鲁棒精度高于原始CI融合器鲁棒精度,且高于每个局部预报器的鲁棒精度.一个仿真例子验证了所提出结果的正确性和有效性.
  • 图  1  基于协方差椭圆的局部和CI融合鲁棒Kalman预报器的矩阵不等式精度比较

    Fig.  1  The comparison of matrix inequality accuracies of the local and CI fused robust Kalman predictors based on covariance ellipses

    图  2  基于协方差椭圆原始的和改进的鲁棒CI融合Kalman预报器的矩阵不等式精度比较

    Fig.  2  The comparison of matrix inequality accuracies of the original and modified CI fused robust Kalman predictors based on covariance ellipses

    图  3  局部和CI融合鲁棒Kalman预报器的MSE曲线

    Fig.  3  The MSE curves of the local and CI fused robust Kalman predictors

    图  4  位置预报误差曲线和 $\pm 3\sigma _1$ 界

    Fig.  4  The position prediction error curve and $\pm 3\sigma_1 $ bounds

    图  5  速度预报误差曲线和 $\pm 3\sigma _2$ 界

    Fig.  5  The velocity prediction error curve and $\pm 3\sigma _2 $ bounds

    表  1  鲁棒Kalman预报器的鲁棒和实际精度比较

    Table  1  The comparison of robust and actual accuracies of robust Kalman predictors

    ${\mathop{\rm tr}\nolimits} {\bar \Sigma _1}$ ${\mathop{\rm tr}\nolimits} {\Sigma _1}$ ${\mathop{\rm tr}\nolimits} {\bar \Sigma _2}$ ${\mathop{\rm tr}\nolimits} {\Sigma _2}$ ${\mathop{\rm tr}\nolimits} {\bar \Sigma _{{CI}}}$ ${\mathop{\rm tr}\nolimits} {\Sigma _{{CI}}}$ ${\mathop{\rm tr}\nolimits} \Sigma _{{CI}}^*$
    1.6267 2.1690 1.4425 2.3544 0.8158 1.1437 1.8751
    下载: 导出CSV
  • [1] Liggains M E, Hall D L, Llinas J. Handbook of Multisensor Data Fusion:Theory and Practice (Second Edition). Boca Raton, FL:CRC Press, 2009.
    [2] Julier S J, Uhlmann J K. General decentralized data fusion with covariance intersection. Handbook of Multisensor Data Fusion:Theory and Practice (Second Edition). Boca Raton, FL:CRC Press, 2009.319-342
    [3] Hajiyev C, Soken H E. Robust adaptive Kalman filter for estimation of UAV dynamics in the presence of sensor/actuator faults. Aerospace Science and Technology, 2013, 28(1):376-383 doi: 10.1016/j.ast.2012.12.003
    [4] Ménec S L, Shin H S, Markham K, Tsourdos A, Piet-Lahanier H. Cooperative allocation and guidance for air defence application. Control Engineering Practice, 2014, 32:236-244 doi: 10.1016/j.conengprac.2014.02.011
    [5] Feng J X, Wang Z D, Zeng M. Distributed weighted robust Kalman filter fusion for uncertain systems with autocorrelated and cross-correlated noises. Information Fusion, 2013, 14(1):78-86 doi: 10.1016/j.inffus.2011.09.004
    [6] Deng Z L, Zhang P, Qi W J, Gao Y, Liu J F. The accuracy comparison of multisensor covariance intersection fuser and three weighting fusers. Information Fusion, 2013, 14(2):177-185 doi: 10.1016/j.inffus.2012.05.005
    [7] Julier S J, Uhlmann J K. A non-divergent estimation algorithm in the presence of unknown correlations. In:Proceedings of the 1997 American Control Conference. Albuquerque, NM:IEEE, 1997.2369-2373 http://cn.bing.com/academic/profile?id=2017642774&encoded=0&v=paper_preview&mkt=zh-cn
    [8] Uhlmann J K. Covariance consistency methods for fault-tolerant distributed data fusion. Information Fusion, 2003, 4(3):201-215 doi: 10.1016/S1566-2535(03)00036-8
    [9] Julier S J, Uhlmann J K. Using covariance intersection for SLAM. Robotics & Autonomous Systems, 2007, 55(1):3-20 http://cn.bing.com/academic/profile?id=2006832107&encoded=0&v=paper_preview&mkt=zh-cn
    [10] Deng Z L, Zhang P, Qi W J, Liu J F, Gao Y. Sequential covariance intersection fusion Kalman filter. Information Sciences, 2012, 189(7):293-309 http://cn.bing.com/academic/profile?id=1984609538&encoded=0&v=paper_preview&mkt=zh-cn
    [11] Sijs J, Lazar M. State fusion with unknown correlation:ellipsoidal intersection. Automatica, 2012, 48(8):1874-1878 doi: 10.1016/j.automatica.2012.05.077
    [12] de Campos Ferreira J C B, Waldmann J. Covariance intersection-based sensor fusion for sounding rocket tracking and impact area prediction. Control Engineering Practice, 2007, 15(4):389-409 doi: 10.1016/j.conengprac.2006.07.002
    [13] Gao Q, Chen S Y, Leung H, Liu S T. Covariance intersection based image fusion technique with application to pansharpening in remote sensing. Information Sciences, 2010, 180(18):3434-3443 doi: 10.1016/j.ins.2010.05.010
    [14] 齐文娟, 张鹏, 邓自立. 带观测滞后和不确定噪声方差的多智能体传感网络鲁棒序贯协方差交叉融合Kalman滤波. 自动化学报, 2014, 40(11):2632-2642 doi: 10.1016/S1874-1029(14)60410-9

    Qi Wen-Juan, Zhang Peng, Deng Zi-Li. Robust sequential covariance intersection fusion Kalman filtering over multi-agent sensor networks with measurement delays and uncertain noise variances. Acta Automatica Sinica, 2014, 40(11):2632-2642 doi: 10.1016/S1874-1029(14)60410-9
    [15] Lazarus S B, Tsourdos A, Zbikowski R, Nabil A, White B A. Robust localisation using data fusion via integration of covariance intersection and interval analysis. In:Proceedings of the 2007 International Conference on Control, Automation and Systems. Seoul, Korea:IEEE, 2007.199-206
    [16] Qi W J, Zhang P, Deng Z L. Robust weighted fusion Kalman filters for multisensor time-varying systems with uncertain noise variances. Signal Processing, 2014, 99:185-200 doi: 10.1016/j.sigpro.2013.12.013
    [17] Qi W J, Zhang P, Nie G H, Deng Z L. Robust weighted fusion Kalman predictors with uncertain noise variances. Digital Signal Processing, 2014, 30:37-54 doi: 10.1016/j.dsp.2014.03.011
    [18] Qi W J, Zhang P, Deng Z L. Robust weighted fusion time-varying Kalman smoothers for multisensor system with uncertain noise variances. Information Sciences, 2014, 282:15-37 doi: 10.1016/j.ins.2014.06.008
    [19] Qi W J, Zhang P, Deng Z L. Weighted fusion robust steady-state Kalman filters for multisensor system with uncertain noise variances. Journal of Applied Mathematics, 2014, 2014:Article ID 369252 http://cn.bing.com/academic/profile?id=2056593946&encoded=0&v=paper_preview&mkt=zh-cn
    [20] Sriyananda H. A simple method for the control of divergence in Kalman-filter algorithms. International Journal of Control, 1972, 16(6):1101-1106 doi: 10.1080/00207177208932342
    [21] Lewis F L, Xie L H, Popa D. Optimal and Robust Estimation (Second Edition). New York:CRC Press, 2007.315-340
    [22] Qu X M, Zhou J. The optimal robust finite-horizon Kalman filtering for multiple sensors with different stochastic failure rates. Applied Mathematics Letters, 2013, 26(1):80-86 doi: 10.1016/j.aml.2012.03.036
    [23] 吴黎明, 马静, 孙书利. 具有不同观测丢失率多传感器随机不确定系统的加权观测融合估计. 控制理论与应用, 2014, 31(2):244-249 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201402017.htm

    Wu Li-Ming, Ma Jing, Sun Shu-Li. Weighted measurement fusion estimation for stochastic uncertain systems with multiple sensors of different missing measurement rates. Control Theory & Applications, 2014, 31(2):244-249 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201402017.htm
    [24] 李娜, 马静, 孙书利. 带多丢包和滞后随机不确定系统的最优线性估计. 自动化学报, 2015, 41(3):611-619 http://www.aas.net.cn/CN/abstract/abstract18638.shtml

    Li Na, Ma Jing, Sun Shu-Li. Optimal linear estimation for stochastic uncertain systems with multiple packet dropouts and delays. Acta Automatica Sinica, 2015, 41(3):611-619 http://www.aas.net.cn/CN/abstract/abstract18638.shtml
    [25] Liu W. Optimal filtering for discrete-time linear systems with time-correlated multiplicative measurement noises. IET Control Theory & Applcation, 2015, 9(6):831-842 http://cn.bing.com/academic/profile?id=2039747833&encoded=0&v=paper_preview&mkt=zh-cn
    [26] Liu W. Optimal estimation for discrete-time linear systems in the presence of multiplicative and time-correlated additive measurement noises. IEEE Transactions on Signal Processing, 2015, 63(17):4583-4593 doi: 10.1109/TSP.2015.2447491
    [27] Li F, Zhou J, Wu D Z. Optimal filtering for systems with finite-step autocorrelated noises and multiple packet dropouts. Aerospace Science and Technology, 2013, 24(1):255-263 doi: 10.1016/j.ast.2011.11.013
    [28] Zhang S, Zhao Y, Wu F L, Zhao J H. Robust recursive filtering for uncertain systems with finite-step correlated noises, stochastic nonlinearities and autocorrelated missing measurements. Aerospace Science and Technology, 2014, 39(39):272-280 http://cn.bing.com/academic/profile?id=2000347446&encoded=0&v=paper_preview&mkt=zh-cn
    [29] Tian T, Sun S L, Li N. Multi-sensor information fusion estimators for stochastic uncertain systems with correlated noises. Information Fusion, 2016, 27:126-137 doi: 10.1016/j.inffus.2015.06.001
    [30] Carravetta F, Germani A, Raimondi M. Polynomial filtering of discrete-time stochastic linear systems with multiplicative state noise. IEEE Transactions on Automatic Control, 1997, 42(8):1106-1126 doi: 10.1109/9.618240
    [31] Wang Z D, Yang F W, Ho D W C, Liu X H. Robust finite-horizon filtering for stochastic systems with missing measurements. IEEE Signal Processing Letters, 2005, 12(6):437-440 doi: 10.1109/LSP.2005.847890
    [32] Wang S Y, Fang H J, Tian X G. Recursive estimation for nonlinear stochastic systems with multi-step transmission delays, multiple packet dropouts and correlated noises. Signal Processing, 2015, 115(2):164-175 http://cn.bing.com/academic/profile?id=2080231200&encoded=0&v=paper_preview&mkt=zh-cn
    [33] Yang F W, Wang Z D, Hung Y S. Robust Kalman filtering for discrete time-varying uncertain systems with multiplicative noises. IEEE Transactions on Automatic Control, 2002, 47(7):1179-1183 doi: 10.1109/TAC.2002.800668
    [34] Luo Y T, Zhu Y M, Luo D D, Zhou J, Song E B, Wang D H. Globally optimal multisensor distributed random parameter matrices Kalman filtering fusion with applications. Sensors, 2008, 8(12):8086-8103 doi: 10.3390/s8128086
    [35] Kailath T, Sayed A H, Hassibi B. Linear Estimation. New York:Prentice Hall, 2000.766-772
    [36] de Koning W L. Optimal estimation of linear discrete-time systems with stochastic parameters. Automatica, 1984, 20(1):113-115 doi: 10.1016/0005-1098(84)90071-2
    [37] Wang Z D, Ho D W C, Liu X H. Robust filtering under randomly varying sensor delay with variance constraints. IEEE Transactions on Circuits and Systems Ⅱ:Express Briefs, 2004, 51(6):320-326 doi: 10.1109/TCSII.2004.829572
    [38] Anderson B D O, Moore J B. Optimal Filtering. Englewood Cliffs, NJ:Prentice Hall, 1979. http://www.oalib.com/references/16878535
    [39] Wu T T, An J, Ding C S, Luo S X. Research on ellipsoidal intersection fusion method with unknown correlation. In:Proceedings of the 15th International Conference on Information Fusion. Singapore:IEEE, 2012.558-564 http://cn.bing.com/academic/profile?id=1708197474&encoded=0&v=paper_preview&mkt=zh-cn
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  2549
  • HTML全文浏览量:  299
  • PDF下载量:  1037
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-25
  • 录用日期:  2015-12-22
  • 刊出日期:  2016-08-01

目录

    /

    返回文章
    返回