2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

特征加权组稀疏判别投影分析算法

郑建炜 黄琼芳 杨平 王万良 马文龙

郑建炜, 黄琼芳, 杨平, 王万良, 马文龙. 特征加权组稀疏判别投影分析算法. 自动化学报, 2016, 42(5): 746-759. doi: 10.16383/j.aas.2016.c150364
引用本文: 郑建炜, 黄琼芳, 杨平, 王万良, 马文龙. 特征加权组稀疏判别投影分析算法. 自动化学报, 2016, 42(5): 746-759. doi: 10.16383/j.aas.2016.c150364
ZHENG Jian-Wei, HUANG Qiong-Fang, YANG Ping, WANG Wan-Liang, MA Wen-Long. Feature Weighted Group Sparse Discriminative Projection Algorithm. ACTA AUTOMATICA SINICA, 2016, 42(5): 746-759. doi: 10.16383/j.aas.2016.c150364
Citation: ZHENG Jian-Wei, HUANG Qiong-Fang, YANG Ping, WANG Wan-Liang, MA Wen-Long. Feature Weighted Group Sparse Discriminative Projection Algorithm. ACTA AUTOMATICA SINICA, 2016, 42(5): 746-759. doi: 10.16383/j.aas.2016.c150364

特征加权组稀疏判别投影分析算法

doi: 10.16383/j.aas.2016.c150364
基金项目: 

国家自然科学基金 61502424, 61379123

浙江省自然科学基金 LY15E050007, LY15F030014, LQ14F030003

详细信息
    作者简介:

    郑建炜 浙江工业大学计算机科学与技术学院副教授. 主要研究方向为机器学习, 模式识别. E-mail:zjw@zjut.edu.cn.

    黄琼芳 浙江工业大学计算机科学与技术学院硕士研究生. 主要研究方向为模式识别. E-mail: gdhqf@sina.cn

    杨平 浙江工业大学计算机科学与技术学院硕士研究生. 主要研究方向为模式识别.E-mail:2111412076@zjut.edu.cn

    王万良 浙江工业大学计算机科学与技术学院教授. 主要研究方向为人工智能,模式识别.E-mail: wwl@zjut.edu.cn

    通讯作者:

    马文龙 衢州职业技术学院信息工程学院副教授. 主要研究方向为机器学习, 智能推荐. 本文通信作者.. E-mail:qzmwlmwl@126.com.

Feature Weighted Group Sparse Discriminative Projection Algorithm

Funds: 

National Natural Science Foundation of China 61502424, 61379123

Zhejiang Provincial Natural Science Foundation LY15E050007, LY15F030014, LQ14F030003

More Information
    Author Bio:

    Associate professor at the College of Computer Science and Technology, Zhejiang University of Technology. His research interest covers machine learning, pattern recognition.

    Master student at the College of Computer Science and Technology, Zhejiang University of Technology. Her research interest covers pattern recognition.

    YANG Ping Master student at the College of Computer Science and Technology, Zhejiang University of Technology. His research interest covers pattern recognition.

    Professor at the College of Computer Science and Technology, Zhejiang University of Technology. His research interest covers artificial intelligence and pattern recognition.

    Corresponding author: MA Wen-Long Associate professor at the School of Information Engineering, Quzhou College of Technology. His research interest covers machine learning and intelligent recommendation. Corresponding author of this paper. E-mail:qzmwlmwl@126.com.
  • 摘要: 近来, 稀疏表示分类算法已经在模式识别和特征提取领域获得了广泛的关注. 受最近提出的稀疏表示判别投影算法启发, 本文提出了一种新的特征加权组稀疏判别投影算法(Feature weighted group sparse classification steered discriminative projection, FWGSDP). 首先, 提出特征加权组稀疏分类算法(Feature weighted group sparsebased classification, FWGSC)进行稀疏系数编码, 该算法采用带特征加权约束的保局性信息, 能够鲁棒地重构给定的输入数据; 其次, 通过类内重构散度最小、类间重构散度最大为目标计算最优投影判别矩阵, 使得输入数据具有最佳的模式分类效果; 最后, 提出迭代重约束稀疏编码方法并结合特征分解操作进行FWGSDP模型高效求解. 在ExYaleB, PIE和AR三个人脸数据库的实验验证了所提算法在普通数据和带噪数据中的分类效果都优于现存的算法.
  • 图  1  不同约束函数下的权值si变化

    Fig.  1  Weight functions for di?erent ˉdelity constraints

    图  2  稀疏型分类器在不同数据库中识别率对比

    Fig.  2  The recognition rates of different sparse representation classifiers in ExYaleB and PIE databases

    图  3  带墨镜遮挡的人脸识别效果展示

    Fig.  3  Example of face recognition with sunglasses disguise

    图  4  不同子空间维数的人脸识别率和方差对比

    Fig.  4  Comparison of recognition rates and variance under different feature dimensions

    图  5  PIE中FWGSC参数λτ选择

    Fig.  5  The selection of parameter λ and τ of FWGSC in PIE database

    图  6  PIE中FWGSDP参数β选择

    Fig.  6  The selection of parameter β of FWGSDP in PIE database

    表  1  AR数据库有遮挡情形下不同算法的识别率对比

    Table  1  Recognition rate by competing algorithms on AR database with occlusion

    测试样本算法墨镜遮挡(%)围巾遮挡(%)
    FWGSC99.395.7
    RRC99.094.7
    同时期CESR95.338.0
    GSRC87.385.0
    SRC89.332.3
    FWGSC89.378.3
    RRC89.376.3
    不同时期CESR79.020.7
    GSRC45.066.0
    SRC57.312.7
    下载: 导出CSV

    表  2  降维前后FWGSC分类算法的人脸识别对比

    Table  2  Comparison of FWGSC performance with and without dimension reduction

    唯数ExYaleBPIE
    识别率(%)测试时间(s)识别率(%)测试时间(s)
    原始样本102497.340.998395.691.4002
    FWGSDP 10095.040.110393.620.4683
    FWGSDP20096.250.117095.200.4896
    FWGSDP30097.440.121595.800.5046
    FWGSDP 40097.610.128695.890.5175
    FWGSDP50097.610.133295.950.5296
    下载: 导出CSV

    表  3  AR数据库有遮挡情形下不同算法的识别率对比

    Table  3  Comparison of competing dimension reduction algorithms on AR database with occlusion

    测试样本算法墨镜遮挡识别率(%)墨镜遮挡耗时(s)围巾遮挡识别率(%)围巾遮挡耗时(s)
    PCA91.01.08385.71.184
    LPP92.52.81089.62.672
    同时期LFDA93.44.38091.54.253
    SRCDP92.821.2758.421.96
    FWGSDP99.514.7296.014.03
    PCA84.61.07970.61.067
    LPP87.32.71475.12.705
    不同时期LFDA86.54.52575.44.361
    SRCDP78.722.1552.422.06
    FWGSDP90.815.1879.614.98
    下载: 导出CSV
  • [1] Wright J, Yang A Y, Ganesh A, Sastry S S, Yi M. Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227
    [2] Xu Y, Zhang D, Yang J, Yang J Y. A two-phase test sample sparse representation method for use with face recognition. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(9): 1255-1262
    [3] He R, Hu B G, Zheng W S, Guo Y Q. Two-stage sparse representation for robust recognition on large-scale database. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence. Atlanta, Georgia, USA: AAAI, 2010. 475-480
    [4] Yang M, Zhang L, Feng X C, Zhang D. Sparse representation based fisher discrimination dictionary learning for image classification. International Journal of Computer Vision, 2014, 109(3): 209-232
    [5] He R, Zheng W S, Hu B G. Maximum correntropy criterion for robust face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1561-1577
    [6] Yang M, Zhang L. Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary. In: Proceedings of the 11th European Conference on Computer Vision. Heraklion, Crete, Greece: Springer, 2010. 448-461
    [7] 刘建伟, 崔立鹏, 刘泽宇, 罗雄麟. 正则化稀疏模型综述. 计算机学报, 2015, 38(7): 1307-1325

    Liu Jian-Wei, Cui Li-Peng, Liu Ze-Yu, Luo Xiong-Lin. Survey on the regularized sparse models. Chinese Journal of Computers, 2018, 38(7): 1307-1325
    [8] Chen Z H, Zuo W M, Hu Q H, Lin L. Kernel sparse representation for time series classification. Information Sciences, 2015, 292: 15-26
    [9] Zhang L, Yang M, Feng X C. Sparse representation or collaborative representation: which helps face recognition? In: Proceedings of the 2011 International Conference on Computer Vision. Barcelona: IEEE, 2011. 471-478
    [10] Zhu P F, Zuo W M, Zhang L, Shiu S C K, Zhang D. Image set-based collaborative representation for face recognition. IEEE Transactions on Information Forensics and Security, 2014, 9(7): 1120-1132
    [11] Majumdar A, Ward R K. Fast group sparse classification. Canadian Journal of Electrical and Computer Engineering, 2009, 34(4): 136-144
    [12] Elhamifar E, Vidal R. Robust classification using structured sparse representation. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI: IEEE, 2011. 1873-1879
    [13] Huang J, Nie F P, Huang H, Ding C. Supervised and projected sparse coding for image classification. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence. Bellevue, Washington, USA: AAAI, 2013. 438-444
    [14] Wang L J, Lu H C, Wang D. Visual tracking via structure constrained grouping. IEEE Signal Processing Letters, 2015, 22(7): 794-798
    [15] Liu H C, Li S T, Yin H T. Infrared surveillance image super resolution via group sparse representation. Optics Communications, 2013, 289: 45-52
    [16] Lu C Y, Min H, Gui J, Zhu L, Lei Y K. Face recognition via weighted sparse representation. Journal of Visual Communication and Image Representation, 2013, 24(2): 111-116
    [17] Timofte R, van Gool L. Adaptive and weighted collaborative representations for image classification. Pattern Recognition Letters, 2014, 43: 127-135
    [18] Wu J Q, Timofte R, van Gool L. Learned collaborative representations for image classification. In: Proceedings of the 2015 IEEE Winter Conference on Applications of Computer Vision. Waikoloa, HI: IEEE, 2015. 456-463
    [19] Chao Y W, Yeh Y R, Chen Y W, Lee Y J, Wang Y C F. Locality-constrained group sparse representation for robust face recognition. In: Proceedings of the 18th IEEE International Conference on Image Processing. Brussels: IEEE, 2011. 761-764
    [20] Tang X, Feng G C, Cai J X. Weighted group sparse representation for undersampled face recognition. Neurocomputing, 2014, 145: 402-415
    [21] Yang M, Zhang L, Yang J, Zhang D. Regularized robust coding for face recognition. IEEE Transactions on Image Processing, 2013, 22(5): 1753-1766
    [22] Jerome F, Trevor H, Robert T. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York: Springer, 2001. 534-553
    [23] Duda R O, Hart P E, Stork D G. Pattern Classification (2nd edition). New York, USA: Wiley, 2001.
    [24] 郑建炜, 王万良, 姚晓敏, 石海燕. 张量局部Fisher判别分析的人脸识别. 自动化学报, 2012, 38(9): 1485-1495

    Zheng Jian-Wei, Wang Wan-Liang, Yao Xiao-Min, Shi Hai-Yan. Face recognition using tensor local Fisher discriminant analysis. Acta Automatica Sinica, 2012, 38(9): 1485-1495
    [25] Zheng J W, Yang D, Chen S Y, Wang W L. Incremental min-max projection analysis for classification. Neurocomputing, 2014, 123: 121-130
    [26] 杨利平, 龚卫国, 辜小花, 李伟红, 杜兴. 完备鉴别保局投影人脸识别算法. 软件学报, 2010, 21(6): 1277-1286

    Yang Li-Ping, Gong Wei-Guo, Gu Xiao-Hua, Li Wei-Hong, Du Xing. Complete discriminant locality preserving projections for face recognition. Journal of Software, 2010, 21(6): 1277-1286
    [27] 赵家程, 崔慧敏, 冯晓兵. 基于统计学习分析多核间性能干扰. 软件学报, 2013, 24(11): 2558-2570

    Zhao Jia-Cheng, Cui Hui-Min, Feng Xiao-Bing. Analyzing cross-core performance interference on multi-core processors based on statistical learning. Journal of Software, 2013, 24(11): 2558-2570
    [28] He X F, Yan S C, Hu Y X, Niyogi P, Zhang H J. Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340
    [29] Sugiyama M. Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. Journal of Machine Learning Research, 2007, 8(5): 1027-1061
    [30] Yan S C, Xu D, Zhang B Y, Zhang H J, Yang Q, Lin S. Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51
    [31] Qiao L S, Chen S C, Tan X Y. Sparsity preserving projections with applications to face recognition. Pattern Recognition, 2010, 43(1): 331-341
    [32] Cheng B, Yang J C, Yan S C, Fu Y, Huang T S. Learning with l1-graph for image analysis. IEEE Transactions on Image Processing, 2010, 19(4): 858-866
    [33] 郑忠龙, 黄小巧, 贾泂, 杨杰. 稀疏局部保持投影. 计算机学报, 2014, 37(9): 2038-2046

    Zheng Zhong-Long, Huang Xiao-Qiao, Jia Jiong, Yang Jie. Locality preserving projection with sparse penalty. Chinese Journal of Computers, 2014 37(9): 2038-2046
    [34] Shao Z F, Zhang L. Sparse dimensionality reduction of hyperspectral image based on semi-supervised local Fisher discriminant analysis. International Journal of Applied Earth Observation and Geoinformation, 2014, 31: 122-129
    [35] Ly N H, Du Q, Fowler J E. Sparse graph-based discriminant analysis for hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 3872-3884
    [36] Yang J, Chu D L, Zhang L, Yu Y, Yang J Y. Sparse representation classifier steered discriminative projection with applications to face recognition. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(7): 1023-1035
    [37] Lu C Y, Huang D S. Optimized projections for sparse representation based classification. Neurocomputing, 2013, 113: 213-219
    [38] Ly N H, Du Q, Fowler J E. Collaborative graph-based discriminant analysis for hyperspectral imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2688-2696
    [39] Yang W K, Wang Z Y, Sun C Y. A collaborative representation based projections method for feature extraction. Pattern Recognition, 2015, 48(1): 20-27
    [40] 马小虎, 谭延琪. 基于鉴别稀疏保持嵌入的人脸识别算法. 自动化学报, 2014, 40(1): 73-82

    Ma Xiao-Hu, Tan Yan-Qi. Face recognition based on discriminant sparsity preserving embedding. Acta Automatica Sinica, 2014, 40(1): 73-82
    [41] Yang M, Zhang D, Zhang D, Wang S L. Relaxed collaborative representation for pattern classification. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI: IEEE, 2012. 2224- 2231
    [42] Liu Y, Li X M, Liu C Y, Tang Y F. Group sparsity in dimensionality reduction of sparse representation. In: Proceedings of the 2014 International Symposium on Wireless Personal Multimedia Communications. Sydney, NSW: IEEE, 2014. 541-546
    [43] Naseem I, Togneri R, Bennamoun M. Linear regression for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(11): 2106-2112
    [44] Liu J, Ji S W, Ye J P. SLEP: Sparse Learning with Efficient Projections. Arizona State University, USA, 2009 [Online], available: http://www.yelab.net/software/SLEP/, May 4, 2016
    [45] Salman A M, Romberg J. Dynamic updating for l1 minimization. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 421-434
    [46] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202
    [47] Lu C Y, Lin Z C, Yan S C. Smoothed low rank and sparse matrix recovery by iteratively reweighted least squares minimization. IEEE Transactions on Image Processing, 2015, 24(2): 646-654
    [48] Lei Y, Song Z J. An improved IRLS algorithm for sparse recovery with intra-block correlation. Optik, 2015, 126(7-8): 850-854
    [49] Li F, Wang J X, Tang B P, Tian D Q. Life grade recognition method based on supervised uncorrelated orthogonal locality preserving projection and K-nearest neighbor classifier. Neurocomputing, 2014, 138: 271-282
    [50] Lee K C, Ho J, Kriegman D. Acquiring linear subspaces for face recognition under variable lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 684-698
    [51] Gross R, Matthews I, Cohn J, Kanade T, Baker S. Multi-PIE. Image and Vision Computing, 2010, 28(5): 807-813
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  2107
  • HTML全文浏览量:  443
  • PDF下载量:  1313
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-23
  • 录用日期:  2015-12-22
  • 刊出日期:  2016-05-01

目录

    /

    返回文章
    返回