2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种改进的高斯近似滤波方法

黄玉龙 张勇刚 李宁 赵琳

黄玉龙, 张勇刚, 李宁, 赵琳. 一种改进的高斯近似滤波方法. 自动化学报, 2016, 42(3): 385-401. doi: 10.16383/j.aas.2016.c150340
引用本文: 黄玉龙, 张勇刚, 李宁, 赵琳. 一种改进的高斯近似滤波方法. 自动化学报, 2016, 42(3): 385-401. doi: 10.16383/j.aas.2016.c150340
HUANG Yu-Long, ZHANG Yong-Gang, LI Ning, ZHAO Lin. An Improved Gaussian Approximate Filtering Method. ACTA AUTOMATICA SINICA, 2016, 42(3): 385-401. doi: 10.16383/j.aas.2016.c150340
Citation: HUANG Yu-Long, ZHANG Yong-Gang, LI Ning, ZHAO Lin. An Improved Gaussian Approximate Filtering Method. ACTA AUTOMATICA SINICA, 2016, 42(3): 385-401. doi: 10.16383/j.aas.2016.c150340

一种改进的高斯近似滤波方法

doi: 10.16383/j.aas.2016.c150340
基金项目: 

中国博士后科学基金 2013M530147

黑龙江省博士后基金 LBH-TZ0505

国家自然科学基金 61201409

国家自然科学基金 61371173

中国博士后科学基金 2014T70309

哈尔滨工程大学中央高校基本科研业务费专项基金 HEUCFQ20150407

黑龙江省博士后基金 LBH-Z13052

详细信息
    作者简介:

    黄玉龙   哈尔滨工程大学自动化学院博士研究生.主要研究方向为惯性导航, 滤波算法和组合导航.E-mail:heuedu@163.com

    李宁   哈尔滨工程大学自动化学院副教授.主要研究方向为自适应滤波和组合导航.E-mail:ningli@hrbeu.edu.cn

    赵琳:ZHAO Lin  Professor at the College of Automation, Harbin Engineering University. His research interest covers inertial navigation, satellite navigation, and integrated navigation.E-mail: zhaolin@hrbeu.edu.cn

    通讯作者:

    张勇刚  哈尔滨工程大学自动化学院教授.2007年获得英国Cardiff大学博士学位.主要研究方向为光纤陀螺, 惯性导航, 滤波算法和组合导航.本文通信作者.E-mail:zhangyg@hrbeu.edu.cn

An Improved Gaussian Approximate Filtering Method

Funds: 

China Postdoctoral Science Foundations 2013M530147

Heilongjiang Postdoctoral Funds LBH-TZ0505

National Natural Science Foundations of China 61201409

National Natural Science Foundations of China 61371173

China Postdoctoral Science Foundations 2014T70309

Fundamental Research Funds for the Central Universities of Harbin Engineering University HEUCFQ20150407

Heilongjiang Postdoctoral Funds LBH-Z13052

More Information
    Author Bio:

      ph. d. candidate at the college of automation, harbin engineering university. his research interest covers inertial navigation, filtering algorithm, and integrated navigation. E-mail:

      Associate professor at the College of Automation, Harbin Engineering University. Her research interest covers adaptive filtering and integrated navigation. E-mail:

    Corresponding author: ZHANG Yong-Gang  Professor at the College of Automation, Harbin Engineering University. He received his Ph. D. degree from Cardiff University, UK in 2007. His research interest covers fiber-optic gyroscope, inertial navigation, filtering algorithms, and integrated navigation. Corresponding author of this paper.E-mail:zhangyg@hrbeu.edu.cn
  • 摘要: 提出了一种改进的高斯近似(Gaussian approximate, GA)滤波方法, 推导了它的一般解和特殊解, 并证明了现有的高斯近似滤波方法是所提出的方法的一种特例.在提出的方法中, 不需要基于高斯假设重复地产生求积点, 而是直接地更新求积点.与现有的高斯近似滤波方法相比, 提出的方法利用了量测求积点修正状态求积点, 从而可以更好地捕获状态一步预测密度和状态后验密度的非高斯信息和高阶矩信息.此外, 提出的方法不仅适用于确定的系统模型而且还适用于随机的系统模型.单变量非平稳增长模型、垂直落体模型、再入飞行器目标跟踪的仿真验证了提出的高斯近似滤波方法的有效性和与现有方法相比的优越性.
  • 图  1  提出的改进高斯近似滤波算法的流程图

    Fig.  1  Diagram of the proposed improved Gaussian approximate filtering algorithm

    图  2  不同滤波方法的RMSE

    Fig.  2  RMSEs of different filtering methods

    图  3  垂直落体模型的几何图

    Fig.  3  Geometry of the vertically falling body model

    图  4  不同滤波方法的高度估计平均绝对值误差

    Fig.  4  Averaged absolute error of the altitude of different filtering methods

    图  5  不同滤波方法的速度估计平均绝对值误差

    Fig.  5  Averaged absolute error of the velocity of different filtering methods

    图  6  不同滤波方法的弹道系数估计平均绝对值误差

    Fig.  6  Averaged absolute error of the ballistic coefficient of different filtering methods

    图  7  不同滤波方法的位置RMSE

    Fig.  7  RMSEs of the position of different filtering methods

    图  8  不同滤波方法的速度RMSE

    Fig.  8  RMSEs of the velocity of different filtering methods

    图  9  不同滤波方法的飞行器系数RMSE

    Fig.  9  RMSEs of the vehicle coefficient of different filtering methods

    表  1  不同滤波方法的平均RMSE

    Table  1  The averaged RMSEs of different filtering methods

    滤波器标准的CKF标准的DDF2和UKF (n=1时等价)现有的改进UKF提出的UKF
    平均RMSE7.4177.7877.2717.009
    下载: 导出CSV

    表  2  不同滤波方法的单步运行时间

    Table  2  The run time of different filtering methods at single step

    滤波器标准的CKF标准的DDF2和UKF (n=1时等价)现有的改进UKF提出的UKF
    单步运行时间(秒)0.21 × 10-30.22 × 10-30.28 × 10-30.32 × 10-3
    下载: 导出CSV

    表  3  不同滤波方法在最后30秒内的平均绝对值误差的均值

    Table  3  The means of averaged absolute errors of different filtering methods over the last 30 s

    滤波器高度估计的平均绝对值
    误差的均值(ft)
    速度估计的平均绝对值
    误差的均值(ft/s)
    弹道系数估计的平均
    绝对值误差的均值
    标准的DDF2143.7019.6365.174 ×10-5
    标准的CKF和UKF(n=3时等价)144.0039.6595.182 ×10-5
    现有的改进UKF92.0605.7233.087 ×10-5
    提出的UKF73.2103.4991.886 ×10-5
    下载: 导出CSV

    表  4  不同滤波方法的单步运行时间

    Table  4  The run time of different filtering methods at single step

    滤波器标准的DDF2标准的CKF和UKF (n=3时等价)现有的改进UKF提出的UKF
    单步运行时间(秒)0.28 × 10-3 0.25 × 10-3 0.35 × 10-30.50 × 10-3
    下载: 导出CSV

    表  5  不同滤波方法在最后25秒内的平均RMSE

    Table  5  The averaged RMSEs of different filtering methods over the last 25 s

    滤波器位置的平均RMSE(m)速度的平均RMSE(m/s)飞行器系数的平均RMSE
    标准的DDF212.14217.0236.212 × 10-2
    标准的CKF14.57720.7478.323 × 10-2
    标准的UKF12.14317.0256.213 × 10-2
    现有的改进UKF11.50516.0265.601 × 10-2
    提出的UKF9.84413.3323.726 × 10-2
    下载: 导出CSV

    表  6  不同滤波方法的单步运行时间

    Table  6  The run time of different filtering methods at single step

    滤波器标准的DDF2标准的CKF标准的UKF现有的改进UKF提出的UKF
    单步运行时间(秒)1.08 × 10-30.97 × 10-31.02 × 10-31.16 × 10-31.20 × 10-3
    下载: 导出CSV
  • [1] 张勇刚, 黄玉龙, 赵琳.一种带多步随机延迟量测高斯滤波器的一般框架解.自动化学报, 2015, 41(1):122-135 http://www.aas.net.cn/CN/Y2015/V41/I1/122

    Zhang Yong-Gang, Huang Yu-Long, Zhao Lin. A general framework solution to Gaussian filter with multiple-step randomly-delayed measurements. Acta Automatica Sinica, 2015, 41(1):122-135 http://www.aas.net.cn/CN/Y2015/V41/I1/122
    [2] 张勇刚, 黄玉龙, 李宁, 赵琳.带一步随机延迟量测非线性序列贝叶斯估计的条件后验克拉美罗下界.自动化学报, 2015, 41(3):559-574 doi: 10.16383/j.aas.2015.c140391

    Zhang Yong-Gang, Huang Yu-Long, Li Ning, Zhao Lin. Conditional posterior Cramér-Rao lower bound for nonlinear sequential Bayesian estimation with one-step randomly delayed measurements. Acta Automatica Sinica, 2015, 41(3):559-574 doi: 10.16383/j.aas.2015.c140391
    [3] Lei M, van Wyk B J, Qi Y. Online estimation of the approximate posterior Cramer-Rao lower bound for discrete-time nonlinear filtering. IEEE Transactions on Aerospace and Electronic systems, 2011, 47(1):37-57 doi: 10.1109/TAES.2011.5705658
    [4] Arasaratnam I, Haykin S. Cubature Kalman filters. IEEE Transactions on Automatic Control, 2009, 54(6):1254-1269 doi: 10.1109/TAC.2009.2019800
    [5] Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings F:Radar and Signal Processing, 1993, 140(2):107-113 doi: 10.1049/ip-f-2.1993.0015
    [6] Guo D, Wang X D. Quasi-Monte Carlo filtering in nonlinear dynamic systems. IEEE Transactions on Signal Processing, 2006, 54(6):2087-2098 doi: 10.1109/TSP.2006.873585
    [7] Wang X X, Liang Y, Pan Q, Zhao C H. Gaussian filter for nonlinear systems with one-step randomly delayed measurements. Automatica, 2013, 49(4):976-986 doi: 10.1016/j.automatica.2013.01.012
    [8] Arasaratnam I, Haykin S, Elliott R J. Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature. Proceedings of the IEEE, 2007, 95(5):953-977 doi: 10.1109/JPROC.2007.894705
    [9] Julier S J, Uhlman J K, Durrant-Whyte H F. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 2000, 45(3):477-482 doi: 10.1109/9.847726
    [10] Julier S J, Uhlman J K. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 2004, 92(3):401-422 doi: 10.1109/JPROC.2003.823141
    [11] Wu Y X, Hu D W, Wu M P, Hu X P. A numerical-integration perspective on Gaussian filters. IEEE Transactions on Signal Processing, 2006, 54(8):2910-2921 doi: 10.1109/TSP.2006.875389
    [12] Norgaard M, Poulsen N K, Ravn O. New developments in state estimation for nonlinear systems. Automatica, 2000, 36(11):1627-1638 doi: 10.1016/S0005-1098(00)00089-3
    [13] Ito K, Xiong K Q. Gaussian filters for nonlinear filtering problems. IEEE Transactions on Automatic Control, 2000, 45(5):910-927 doi: 10.1109/9.855552
    [14] Jia B, Xin M, Cheng Y. High-degree cubature Kalman filter. Automatica, 2013, 49(2):510-518 doi: 10.1016/j.automatica.2012.11.014
    [15] Jia B, Xin M, Cheng Y. Sparse-grid quadrature nonlinear filtering. Automatica, 2012, 48(2):327-341 doi: 10.1016/j.automatica.2011.08.057
    [16] Duník J, Straka O, Šimandl M. Stochastic integration filter. IEEE Transactions on Automatic Control, 2013, 58(6):1561-1566 doi: 10.1109/TAC.2013.2258494
    [17] Zhang X C. A novel cubature Kalman filter for nonlinear state estimation. In:Proceedings of the 2013 IEEE 52nd Annual Conference on Decision and Control. Firenze:IEEE, 2013. 7797-7802
    [18] Zhang Y G, Huang Y L, Li N, Zhao L. Embedded cubature Kalman filter with adaptive setting of free parameter. Signal Processing, 2015, 114:112-116 doi: 10.1016/j.sigpro.2015.02.022
    [19] Wang S Y, Feng J C, Tse C K. Spherical simplex-radial cubature Kalman filter. IEEE Signal Processing Letters, 2014, 21(1):43-46 doi: 10.1109/LSP.2013.2290381
    [20] 张勇刚, 黄玉龙, 武哲民, 李宁.一种高阶无迹卡尔曼滤波方法.自动化学报, 2014, 40(5):838-848 http://www.aas.net.cn/CN/Y2014/V40/I5/838

    Zhang Yong-Gang, Huang Yu-Long, Wu Zhe-Min, Li Ning. A high order unscented Kalman filtering method. Acta Automatica Sinica, 2014, 40(5):838-848 http://www.aas.net.cn/CN/Y2014/V40/I5/838
    [21] Chang L B, Hu B Q, Li A, Qin F J. Transformed unscented Kalman filter. IEEE Transactions on Automatic Control, 2013, 58(1):252-257 doi: 10.1109/TAC.2012.2204830
    [22] Zhang Y G, Huang Y L, Li N, Zhao L. Interpolatory cubature Kalman filters. IET Control Theory and Applications, 2015, 9(11):1731-1739 doi: 10.1049/iet-cta.2014.0873
    [23] Tian Y, Cheng Y. Novel measurement update method for quadrature-based Gaussian filters. In:Proceedings of the 2013 AIAA Guidance, Navigation, and Control Conference. Boston:AIAA, 2013. 1-15
    [24] van der Merwe R. Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models[Ph., D. dissertation], Oregon Health & Science University, Portland, OR, USA, 2004
    [25] Cheng Y, Tian Y, Crassidis J L. Extension of the sparse grid quadrature filter. In:Proceedings of the 17th International Conference on Information Fusion (FUSION). Salamanca:IEEE, 2014. 1-7
    [26] Golub G H, Van Loan C F. Matrix Computations (Fourth edition). Baltimore, Maryland:The Johns Hopkins University Press, 2013.
    [27] 黄玉龙, 张勇刚, 李宁, 赵琳.一种带有色量测噪声的非线性系统辨识方法.自动化学报, 2015, 41(11):1877-1892 http://www.aas.net.cn/CN/Y2015/V41/I11/1877

    Huang Yu-Long, Zhang Yong-Gang, Li Ning, Zhao Lin. An identification method for nonlinear systems with colored measurement noise. Acta Automatica Sinica, 2015, 41(11):1877-1892 http://www.aas.net.cn/CN/Y2015/V41/I11/1877
    [28] Šimandl M, Duník J. Derivative-free estimation methods:new results and performance analysis. Automatica, 2009, 45(7):1749-1757
    [29] Lee J H. Nonlinear estimation and multiple sensor fusion using unscented information filtering. IEEE Signal Processing Letters, 2008, 15:861-864 doi: 10.1109/LSP.2008.2005447
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  3320
  • HTML全文浏览量:  208
  • PDF下载量:  1306
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-27
  • 录用日期:  2015-12-21
  • 刊出日期:  2016-03-20

目录

    /

    返回文章
    返回