-
摘要: 针对传统张量投票(Tensor voting)算法计算过程复杂、算法效率低的问题, 本文提出了一种二维解析张量投票算法.首先, 深入分析张量投票理论的基本思想, 分析传统张量投票算法的不足及其根源; 其次, 设计了一种二维解析棒张量投票新机制, 实现了二维解析棒张量投票的直接求取; 在此基础上, 利用二维解析棒张量投票不依赖参考坐标系的特性, 设计并求解了二维解析球张量投票表达式, 解决了长期困扰张量投票理论中球张量投票无法解析求解, 仅能通过迭代数值计算, 计算过程复杂、算法效率低、算法精度与算法效率存在矛盾的难题.最后, 通过仿真分析和对比实验验证了本文算法在精度和计算效率方面的性能均优于传统张量投票算法.Abstract: A novel 2D analytical tensor voting algorithm is proposed to reduce the complexity and heavy computational burden in traditional tensor voting. Firstly, basic thoughts of tensor voting theory are investigated, and shortcomings and corresponding reasons are analyzed. Secondly, a new voting mechanism for 2D stick tensor is proposed and an analytical solution to the proposed 2D stick tensor voting mechanism is presented. Owing to the analytical 2D stick tensor voting being independent of the particular reference coordinate system, the mechanism for 2D ball tensor voting is proposed and the analytical solution is also provided. Thus, the problems of iterated numerical approximation, complicate computational process and the confliction between accuracy and efficiency in traditional 2D tensor voting, all caused by lack of analytical solutions, are soundly solved. At last, the correctness, accuracy and efficiency of the proposed algorithm are validated through simulated analysis and comparative experimental results.
-
Key words:
- Tensor voting /
- structure inference /
- analytical solution /
- feature extraction
-
表 1 算法运行时间比较
Table 1 Running time comparison between the methods
投票 棒投票时间(ms) 球投票时间(ms) 点数 传统方法 本文方法 传统方法 本文方法 4 225 9.123 3.775 222.619 1.549 6 241 11.820 6.137 292.801 2.273 16 641 36.184 13.621 979.026 7.407 -
[1] Guy G, Medioni G. Inference of surfaces, 3D curves, and junctions from sparse, noise, 3D data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(11):1265-1277 doi: 10.1109/34.632985 [2] Rashwan H A, Puig D, Garcia M A. Improving the robustness of variational optical flow through tensor voting. Computer Vision and Image Understanding, 2012, 116(9):953-966 doi: 10.1016/j.cviu.2012.04.006 [3] Martinez-Sanchez A, Garcia I, Asano S, Lucic V, Fernandez J. Robust membrane detection based on tensor voting for electron tomography. Journal of Structural Biology, 2014, 186(1):49-61 doi: 10.1016/j.jsb.2014.02.015 [4] Park M K, Lee S J, Jang I Y, Lee Y Y, Lee K H. Feature-aware filtering for point-set surface denoising. Computers and Graphics, 2013, 37(6):589-595 doi: 10.1016/j.cag.2013.05.004 [5] Yi B, Liu Z Y, Tan J R, Cheng F B, Duan G F, Liu L G. Shape recognition of CAD models via iterative slippage analysis. Computer-Aided Design, 2014, 55:13-25 doi: 10.1016/j.cad.2014.04.008 [6] Tang C K, Medioni G. Curvature-augmented tensor voting for shape inference from noisy 3D data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(6):858-864 doi: 10.1109/TPAMI.2002.1008395 [7] Tong W S, Tang C K, Mordohai P, Medioni G. First order augmentation to tensor voting for boundary inference and multiscale analysis in 3D. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5):594-611 doi: 10.1109/TPAMI.2004.1273934 [8] Tong W S, Tang C K, Medioni G. Epipolar geometry estimation for non-static scenes by 4D tensor voting. In:Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai, USA:IEEE, 2001, 1:I-926-I-933 [9] Mordohai P, Medioni G. Stereo using monocular cues within the tensor voting framework. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(6):968-982 doi: 10.1109/TPAMI.2006.129 [10] Kim H S, Choi H K, Lee K H. Feature detection of triangular meshes based on tensor voting theory. Computer-Aided Design, 2009, 41(1):47-58 doi: 10.1016/j.cad.2008.12.003 [11] Moreno R, Garcia M A, Puig D, Pizarro L, Burgeth B, Weickert J. On improving the efficiency of tensor voting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11):2215-2228 doi: 10.1109/TPAMI.2011.23 [12] Wu T P, Yeung S K, Jia J, Tang C K, Medioni G. A closed-form solution to tensor voting:theory and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(8):1482-1495 doi: 10.1109/TPAMI.2011.250 [13] Maggiori E, Lotito P, Manterola H L, del Fresno M. Comments on "A closed-form solution to tensor voting:theory and applications". IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(12):2567-2568 doi: 10.1109/TPAMI.2014.2342233 [14] Mordohai P, Medioni G. Tensor voting:a perceptual organization approach to computer vision and machine learning. Synthesis Lectures on Image, Video, and Multimedia Processing, 2006, 2(1):1-136 http://muriel.mycincylife.com/pdfread/tensor-voting-a-perceptual-organization-approach-to-computer-vision-and-machine-learning.pdf