2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

局部子空间聚类

刘展杰 陈晓云

刘展杰, 陈晓云. 局部子空间聚类. 自动化学报, 2016, 42(8): 1238-1247. doi: 10.16383/j.aas.2016.c150335
引用本文: 刘展杰, 陈晓云. 局部子空间聚类. 自动化学报, 2016, 42(8): 1238-1247. doi: 10.16383/j.aas.2016.c150335
LIU Zhan-Jie, CHEN Xiao-Yun. Local Subspace Clustering. ACTA AUTOMATICA SINICA, 2016, 42(8): 1238-1247. doi: 10.16383/j.aas.2016.c150335
Citation: LIU Zhan-Jie, CHEN Xiao-Yun. Local Subspace Clustering. ACTA AUTOMATICA SINICA, 2016, 42(8): 1238-1247. doi: 10.16383/j.aas.2016.c150335

局部子空间聚类

doi: 10.16383/j.aas.2016.c150335
基金项目: 

国家自然科学基金 71273053, 11571074

福建省自然科学基金 2014J01009

详细信息
    作者简介:

    刘展杰 福州大学数学与计算机科学学院硕士研究生.主要研究方向为数据挖掘,模式识别.E-mail:liufzu@gmail.com

    通讯作者:

    陈晓云 福州大学数学与计算机科学学院教授.主要研究方向为数据挖掘、模式识别.本文通信作者.E-mail:cxiaoyun@21cn.com

Local Subspace Clustering

Funds: 

National Natural Science Foundation of China 71273053, 11571074

Natural Science Foundation of Fujian Province 2014J01009

More Information
    Author Bio:

    Master student at the College of Mathematics and Computer Science, Fuzhou University. His research interest covers data mining and pattern recognition.E-mail:

    Corresponding author: CHEN Xiao-Yun Professor at the College of Mathematics and Computer Science, Fuzhou University. Her research interest covers data mining and pattern recognition.
  • 摘要: 现有子空间聚类方法通常以数据全局线性为前提,将每个样本点表示为其他样本点的线性组合,因而导致常见子空间聚类方法不能很好地应用于非线性数据.为克服全局线性表示的局限,借鉴流形学习思想,用k近邻局部线性表示代替全局线性表示,与稀疏子空间聚类和最小二乘子空间聚类方法相结合,提出局部稀疏子空间聚类和局部最小二乘子空间聚类方法,统称局部子空间聚类方法.在双月形数据、6个图像数据集和4个基因表达数据集上进行实验,实验结果表明该方法是有效的.
  • 图  1  在双月形数据上学习的邻接图

    Fig.  1  Learned adjacency graph on the two-moon synthetic data

    图  2  双月形数据

    Fig.  2  The two-moon synthetic data

    图  3  LSC在双月形数据学习得到的邻接图

    Fig.  3  Learned adjacency graph by LSC on the two-moon synthetic data

    图  4  双月形数据上的仿射矩阵

    Fig.  4  The affinity matrixes on the two-moon synthetic data

    图  5  在双月形数据上LSC的参数学习

    Fig.  5  Study on the LSC's parameters on the two-moon synthetic data

    图  6  部分样本图像

    Fig.  6  Sample images

    图  7  PCA对不同图像数据和算法的影响

    Fig.  7  PCA on the image data and algorithms

    表  1  双月形数据上聚类准确率(%)和运行时间(s)的对比

    Table  1  Clustering accuracy (%) and running time (s)comparison on the two-moon synthetic data

    HC K-meansLRR SSC LSR BD-LRRRLLRRSMRLSSCLLSR
    ACC100.0072.0053.5053.50 50.0050.00 52.0051.50100.00100.00
    (0.001)(0.005)(0.0001)(0.08)(0.1)(0.001) (0.0001,5)(0.0001,5)
    Time 0.00100.00261.894.80 0.0008 19.150.330.0450.94 0.10
    下载: 导出CSV

    表  2  数据集描述

    Table  2  Summary of the data sets

    数据集样本类别
    ORL10P1001129210
    PIX10P10010010010
    PIE10P210554410
    Umist575282320
    USPS1 000161610
    COIL201 440323220
    下载: 导出CSV

    表  3  聚类准确率

    Table  3  Clustering accuracy (%)

    HCK-meansLRRSSCLSRBD-LRRRLLRRSMRLSSCLLSR
    ORL10P41.0073.4079.0071.0083.0070.3074.7078.0086.0087.00
    PIX10P77.0079.9087.0086.0085.0076.8056.1088.0096.0097.00
    PIE10P70.9532.95100.0090.0090.0080.0079.43100.0098.57100.00
    Umist45.5747.5852.1761.5752.3548.3550.9669.9176.8774.09
    USPS10.9073.1478.6060.8071.3063.9065.5077.1081.2091.20
    COIL2053.4760.1065.6972.0163.4067.7268.8067.1578.2679.58
    下载: 导出CSV

    表  4  运行时间的对比(s)

    Table  4  Running time (s) comparison

    HCK-meansLRRSSCLSRBD-LRRRLLRRSMRLSSCLLSR
    ORL10P0.00110.00710.540.210.000787.291.690.0140.140.034
    PIX10P0.000950.00621.040.330.000737.601.720.0121.250.035
    PIE10P0.00230.0114.512.530.001522.232.140.0570.320.13
    Umist0.0110.03725.1462.270.015240.7013.480.711.520.92
    USPS0.0340.091130.61124.570.044884.42120.334.533.572.75
    COIL200.0720.071423.542.511446.67926.78134.8618.9218.975.69
    下载: 导出CSV

    表  5  数据集描述

    Table  5  Summary of the data sets

    数据集样本基因类别
    Leukemia1725 3273
    SRBCT832 3084
    Lung_Cancer20312 6005
    Prostate_Tumor10210 5092
    下载: 导出CSV

    表  6  聚类准确率(%)

    Table  6  Clustering accuracy (%)

    HCK-meansLRRSSCLSRBD-LRRRLLRRSMRLSSCLLSR
    Leukemia154.1769.3186.1158.3377.7879.1754.1777.7890.2890.28
    SRBCT36.1453.7368.4340.1254.2260.2446.9963.6874.7074.46
    Lung_Cancer78.3383.5087.3983.7492.6185.2284.2490.6491.6392.61
    Prostate_Tumor51.9663.7362.7556.8662.7560.7860.7859.8066.6769.61
    下载: 导出CSV
  • [1] Yang A Y, Wright J, Ma Y, Sastry S S. Unsupervised segmentation of natural images via lossy data compression. Computer Vision and Image Understanding, 2008, 110(2):212-225 doi: 10.1016/j.cviu.2007.07.005
    [2] Vidal R, Tron R, Hartley R. Multiframe motion segmentation with missing data using power factorization and GPCA. International Journal of Computer Vision, 2008, 79(1):85-105 doi: 10.1007/s11263-007-0099-z
    [3] 王卫卫, 李小平, 冯象初, 王斯琪. 稀疏子空间聚类综述. 自动化学报, 2015, 41(8):1373-1384 http://www.aas.net.cn/CN/abstract/abstract18712.shtml

    Wang Wei-Wei, Li Xiao-Ping, Feng Xiang-Chu, Wang Si-Qi. A survey on sparse subspace clustering. Acta Automatica Sinica, 2015, 41(8):1373-1384 http://www.aas.net.cn/CN/abstract/abstract18712.shtml
    [4] Hong W, Wright J, Huang K, Ma Y. Multiscale hybrid linear models for lossy image representation. IEEE Transactions on Image Processing, 2006, 15(12):3655-3671 doi: 10.1109/TIP.2006.882016
    [5] Vidal R, Favaro P. Low rank subspace clustering (LRSC). Pattern Recognition Letters, 2014, 43:47-61 doi: 10.1016/j.patrec.2013.08.006
    [6] Elhamifar E, Vidal R. Sparse subspace clustering. In:Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Miami, FL, USA:IEEE, 2009.2790-2797 https://www.computer.org/csdl/proceedings/cvpr/2009/3992/00/index.html
    [7] Liu G C, Lin Z C, Yu Y. Robust subspace segmentation by low-rank representation. In:Proceedings of the 27th International Conference on Machine Learning (ICML). Haifa, Israel, 2010.663-670
    [8] Lu C Y, Min H, Zhao Z Q, Zhu L, Huang D S, Yan S C. Robust and efficient subspace segmentation via least squares regression. In:Proceedings of the 12th European Conference on Computer Vision (ECCV). Florence, Italy:Springer, 2012.347-360
    [9] Zhang H Y, Lin Z C, Zhang C, Cao J B. Robust latent low rank representation for subspace clustering. Neurocomputing, 2014, 145:369-373 doi: 10.1016/j.neucom.2014.05.022
    [10] Hu H, Lin Z C, Feng J J, Zhou J. Smooth representation clustering. In:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, OH, USA:IEEE, 2014.3834-3841
    [11] Soltanolkotabi M, Elhamifar E, Candés E J. Robust subspace clustering. The Annals of Statistics, 2014, 42(2):669-699 doi: 10.1214/13-AOS1199
    [12] Feng J S, Lin Z C, Xu H, Yan S C. Robust subspace segmentation with block-diagonal prior. In:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, OH, USA:IEEE, 2014.3818-3825
    [13] Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 1996, 58(1):267-288 http://cn.bing.com/academic/profile?id=2135046866&encoded=0&v=paper_preview&mkt=zh-cn
    [14] Hoerl A E, Kennard R W. Ridge regression:biased estimation for nonorthogonal problems. Technometrics, 1970, 12(1):55-67 doi: 10.1080/00401706.1970.10488634
    [15] Fan J Q, Li R Z. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 2001, 96(456):1348-1360 doi: 10.1198/016214501753382273
    [16] Lee S R, Heo G S, Lee C Y. Representation and symbolization of motion captured human action by locality preserving projections. Applied Mathematics & Information Sciences, 2014, 8(1):441-446 http://cn.bing.com/academic/profile?id=2324349122&encoded=0&v=paper_preview&mkt=zh-cn
    [17] Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500):2323-2326 doi: 10.1126/science.290.5500.2323
    [18] Tang Y Y, Yuan H L, Li L Q. Manifold-based sparse representation for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(12):7606-7618 doi: 10.1109/TGRS.2014.2315209
    [19] Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 2011, 3(1):1-122 http://cn.bing.com/academic/profile?id=2164278908&encoded=0&v=paper_preview&mkt=zh-cn
    [20] Shi J B, Malik J. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):888-905 doi: 10.1109/34.868688
    [21] Cai D, He X F, Wu X Y, Han J W. Non-negative matrix factorization on manifold. In:Proceedings of the 8th IEEE International Conference on Data Mining (ICDM). Pisa:IEEE, 2008.63-72
    [22] Hou C P, Nie F P, Yi D Y, Tao D C. Discriminative embedded clustering:a framework for grouping high-dimensional data. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(6):1287-1299 doi: 10.1109/TNNLS.2014.2337335
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  2577
  • HTML全文浏览量:  740
  • PDF下载量:  1155
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-29
  • 录用日期:  2015-11-26
  • 刊出日期:  2016-08-01

目录

    /

    返回文章
    返回