HPA Predistortion Algorithm Based on Adaptive Extended Kalman Filter and Neural Network
-
摘要: 针对强记忆功放的非线性问题,提出一种基于自适应扩展卡尔曼滤波与神经网络的高功放(High power amplifier, HPA)预失真算法.采用实数固定延时神经网络(Real-valued focused time-delay neural network, RVFTDNN)对间接学习结构预失真系统中的预失真器和逆估计器进行建模,扩展卡尔曼滤波(Extended Kalman filter, EKF)算法训练神经网络,从理论上指出Levenberg-Marquardt(LM)算法是EKF算法的特殊情况,并用李亚普诺夫稳定性理论分析EKF算法的稳定收敛条件,推导出测量误差矩阵的自适应迭代公式.结果表明:自适应EKF算法的训练误差和泛化误差均比LM算法更低,预失真后的邻道功率比(Adjacent channel power ratio, ACPR)比LM算法改善了2dB.
-
关键词:
- 高功率放大器 /
- 预失真 /
- 神经网络 /
- 非线性 /
- 自适应扩展卡尔曼滤波
Abstract: For the nonlinearity of high power amplifier(HPA) with strong memory effects, a novel HPA predistortion algorithm based on adaptive extended Kalman filter and neural network is proposed. In the predistortion system with indirect learning architecture, the predistorter and HPA inverse estimator are modeled with the same real-valued focused time-delay neural network(RVFTDNN), and the extended Kalman filter(EKF) is used to iteratively train and update the coefficients of the neural network. It is concluded that Levenberg-Marquardt(LM) algorithm is a special case of EKF algorithm in theory. The stably convergence condition of EKF training algorithm is analysed with the Lyapunov stability theory and adaptive covariance matrix of measurement noise is derived for iterative computation. Simulation results show that compared with LM algorithm the training error and generalization error of adaptive EKF predistortion algorithm are both less. The adjacent channel power ratio(ACPR) of HPA output signal with adaptive EKF predistortion is better than that of LM predistortion by 2dB. -
表 1 LM算法和自适应EKF算法的训练误差和泛化误差比较
Table 1 Comparison of training errors and generalization errors using LM algorithm and adaptive EKF algorithm
训练误差(样本数3000) 泛化误差(样本数3000) 训练误差(样本数1000) 泛化误差(样本数1000) LM算法 $7.5877×10^{-7}$ $1.7229×10^{-6}$ $4.9250×10^{-6}$ $9.4585×10^{-6}$ 自适应EKF算法 $5.4270×10^{-8}$ $7.4936×10^{-7}$ $2.4373×10^{-6}$ $6.8848×10^{-6}$ -
[1] Liu Y J, Lu B, Cao T, Zhou B H, Zhou J, Liu Y N. On the robustness of look-up table digital predistortion in the presence of loop delay error. IEEE Transactions on Circuits and Systems I:Regular Papers, 2012, 59(10):2432-2442 doi: 10.1109/TCSI.2012.2185332 [2] Hammi O, Ghannouchi F M, Boumaiza S, Vassilakis B. A data-based nested LUT model for RF power amplifiers exhibiting memory effects. IEEE Microwave and Wireless Components Letters, 2007, 17(10):712-714 doi: 10.1109/LMWC.2007.905627 [3] Muhonen K J, Kavehrad M, Krishnamoorthy R. Look-up table techniques for adaptive digital predistortion:a development and comparison. IEEE Transactions on Vehicular Technology, 2000, 49(5):1995-2002 doi: 10.1109/25.892601 [4] Liu Y J, Zhou J, Chen W H, Zhou B H. A robust augmented complexity-reduced generalized memory polynomial for wideband RF power amplifiers. IEEE Transactions on Industrial Electronics, 2014, 61(5):2389-2401 doi: 10.1109/TIE.2013.2270217 [5] Morgan D R, Ma Z, Kim J, Zierdt M G, Pastalan J. A generalized memory polynomial model for digital predistortion of RF power amplifiers. IEEE Transactions on Signal Processing, 2006, 54(10):3852-3860 doi: 10.1109/TSP.2006.879264 [6] Moon J, Bumman K. Enhanced Hammerstein behavioral model for broadband wireless transmitters. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(4):924-933 doi: 10.1109/TMTT.2011.2110659 [7] Liu Y J, Chen W H, Zhou J, Zhou B H, Ghannouchi F M. Digital predistortion for concurrent dual-band transmitters using 2-D modified memory polynomials. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(1):281-290 doi: 10.1109/TMTT.2012.2228216 [8] Ibnkahla M, Sombrin J, Castanie F, Bershad N J. Neural networks for modeling nonlinear memoryless communication channels. IEEE Transactions on Communications, 1997, 45(7):768-771 doi: 10.1109/26.602580 [9] Liu T J, Boumaiza S, Ghannouchi F M. Dynamic behavioral modeling of 3G power amplifiers using real-valued time-delay neural networks. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(3):1025-1033 doi: 10.1109/TMTT.2004.823583 [10] 瞿建峰, 周健义, 洪伟, 张雷. 有记忆效应的功放实数延时模糊神经网络模型. 微波学报, 2009, 25(5):41-44 http://www.cnki.com.cn/Article/CJFDTOTAL-WBXB200905009.htmZhai Jian-Feng, Zhou Jian-Yi, Hong Wei, Zhang Lei. Real-valued time-delay neuro-fuzzy model for power amplifier with memory effects. Journal of Microwaves, 2009, 25(5):41-44 http://www.cnki.com.cn/Article/CJFDTOTAL-WBXB200905009.htm [11] Mkadem F, Boumaiza S. Physically inspired neural network model for RF power amplifier behavioral modeling and digital predistortion. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(4):913-923 doi: 10.1109/TMTT.2010.2098041 [12] Chen S, Hong X, Gong Y, Harris C J. Digital predistorter design using B-spline neural network and inverse of De Boor algorithm. IEEE Transactions on Circuits and Systems I:Regular Papers, 2013, 60(6):1584-1594 doi: 10.1109/TCSI.2012.2226514 [13] Rawat M, Ghannouchi F M. Distributed spatiotemporal neural network for nonlinear dynamic transmitter modeling and adaptive digital predistortion. IEEE Transactions on Instrumentation and Measurement, 2012, 61(3):595-608 doi: 10.1109/TIM.2011.2170915 [14] Hagan M T, Menhaj M B. Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 1994, 5(6):989-993 doi: 10.1109/72.329697 [15] Rawat M, Rawat K, Ghannouchi F M. Adaptive digital predistortion of wireless power amplifiers/transmitters using dynamic real-valued focused time-delay line neural networks. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(1):95-104 doi: 10.1109/TMTT.2009.2036334 [16] Zayani R, Bouallegue R, Roviras D. Levenberg-Marquardt learning neural network for adaptive predistortion for time-varying HPA with memory in OFDM systems. In:Proceedings of the 16th European Signal Processing Conference. Lausanne, Switzerland:IEEE, 2008. 1-5 [17] Zhang R, Xu Z B, Huang G B, Wang D H. Global convergence of online BP training with dynamic learning rate. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(2):330-341 doi: 10.1109/TNNLS.2011.2178315 [18] 黄春晖, 温永杰. 用记忆型BP神经网络实现HPA预失真的算法研究. 通信学报, 2014, 35(1):16-23 http://www.cnki.com.cn/Article/CJFDTOTAL-TXXB201401003.htmHuang Chun-Hui, Wen Yong-Jie. Algorithm study of digital HPA predistortion using one novel memory type BP neural network. Journal on Communications, 2014, 35(1):16-23 http://www.cnki.com.cn/Article/CJFDTOTAL-TXXB201401003.htm [19] 赵光琼, 陈绍刚, 付奎, 唐忠樑, 贺威. 基于变尺度变换减少Sigma点的粒子滤波算法研究. 自动化学报, 2015, 41(7):1350-1355 http://www.aas.net.cn/CN/abstract/abstract18708.shtmlZhao Guang-Qiong, Chen Shao-Gang, Fu Kui, Tang Zhong-Liang, He Wei. A particle filter algorithm based on scaled UKF with reduced sigma points. Acta Automatica Sinica, 2015, 41(7):1350-1355 http://www.aas.net.cn/CN/abstract/abstract18708.shtml [20] Bonnabel S, Slotine J J. A contraction theory-based analysis of the stability of the deterministic extended Kalman filter. IEEE Transactions on Automatic Control, 2015, 60(2):565-569 doi: 10.1109/TAC.2014.2336991 [21] Wang B, Ren Q, Deng Z H, Fu M Y. A self-calibration method for nonorthogonal angles between gimbals of rotational inertial navigation system. IEEE Transactions on Industrial Electronics, 2015, 62(4):2353-2362 doi: 10.1109/TIE.2014.2361671 [22] 赵欣, 王仕成, 廖守亿, 马龙, 刘志国. 基于抗差自适应容积卡尔曼滤波的超紧耦合跟踪方法. 自动化学报, 2014, 40(11):2530-2540 http://www.aas.net.cn/CN/abstract/abstract18529.shtmlZhao Xin, Wang Shi-Cheng, Liao Shou-Yi, Ma Long, Liu Zhi-Guo. An ultra-tightly coupled tracking method based on robust adaptive cubature Kalman filter. Acta Automatica Sinica, 2014, 40(11):2530-2540 http://www.aas.net.cn/CN/abstract/abstract18529.shtml [23] Choi J, de C Lima A C, Simon H. Kalman filter-trained recurrent neural equalizers for time-varying channels. IEEE Transactions on Communications, 2005, 53(3):472-480 doi: 10.1109/TCOMM.2005.843416 [24] de Jesús Rubio J, Yu W. Nonlinear system identification with recurrent neural networks and dead-zone Kalman filter algorithm. Neurocomputing, 2007, 70(13-15):2460-2466 doi: 10.1016/j.neucom.2006.09.004 [25] Wang X Y, Huang Y. Convergence study in extended Kalman filter-based training of recurrent neural networks. IEEE Transactions on Neural Networks, 2011, 22(4):588-600 doi: 10.1109/TNN.2011.2109737 [26] Jun Z, Zhu X L, Wang W, Liu Y. Extended Kalman filter-based Elman networks for industrial time series prediction with GPU acceleration. Neurocomputing, 2013, 118:215-224 doi: 10.1016/j.neucom.2013.02.031 [27] Ahmed R, Sayed M E, Gadsden S A, Tjong J, Habibi S. Automotive internal-combustion-engine fault detection and classification using artificial neural network techniques. IEEE Transactions on Vehicular Technology, 2015, 64(1):21-33 doi: 10.1109/TVT.2014.2317736 [28] Guillermoa J E, Castellanos L J R, Sanchez E N, Alanis A Y. Detection of heart murmurs based on radial wavelet neural network with Kalman learning. Neurocomputing, 2015, 164:307-317 doi: 10.1016/j.neucom.2014.12.059 [29] Feng X X, Snoussi H, Liang Y. Constrained extended Kalman filter for ultra-wideband radio based individual navigation. In:Proceedings of the 17th International Conference on Information Fusion. Salamanca, Spain:IEEE, 2014. 1-7 [30] 殷礼胜, 何怡刚, 董学平, 鲁照权. 交通流量VNNTF神经网络模型多步预测研究. 自动化学报, 2014, 40(9):2066-2072 http://www.aas.net.cn/CN/abstract/abstract18480.shtmlYin Li-Sheng, He Yi-Gang, Dong Xue-Ping, Lu Zhao-Quan. Research on the multi-step prediction of Volterra neural network for traffic flow. Acta Automatica Sinica, 2014, 40(9):2066-2072 http://www.aas.net.cn/CN/abstract/abstract18480.shtml [31] 钱业青. 一种高效的用于RF功率放大器线性化的自适应预失真结构. 通信学报, 2006, 27(5):35-40, 46-46 http://www.cnki.com.cn/Article/CJFDTOTAL-TXXB200605006.htmQian Ye-Qing. High-efficient adaptive predistortion structure for RF power amplifier linearization. Journal on Communications, 2006, 27(5):35-40, 46-46 http://www.cnki.com.cn/Article/CJFDTOTAL-TXXB200605006.htm [32] Hunter D, Yu H, Pukish M S, Kolbusz J, Wilamowski B M. Selection of proper neural network sizes and architectures-a comparative study. IEEE Transactions on Industrial Informatics, 2012, 8(2):228-240 doi: 10.1109/TII.2012.2187914