-
摘要: 熔丝沉积制造(Fused deposition modeling, FDM)是利用熔融塑料丝的一种3D打印技术,热塑料由喷嘴喷出逐层堆积完成打印.由于熔丝只能沉积在已存在物体的上层,因此需要构造支撑结构以支撑悬空部分.针对现有支撑结构生成算法中存在的或结构不稳固或耗材多的缺陷,提出一种以熔丝为支撑单位的树形稀疏支撑结构.与传统算法计算模型表面支撑区域不同,本算法计算每段熔丝需要支撑的区域,使支撑结构更契合熔丝沉积特点.算法还将支撑结构分为三类,将多约束优化问题分解,降低算法复杂度.实验结果表明,本文算法生成的支撑结构算法耗材少、支撑稳定.Abstract: Fused deposition modeling(FDM) is the process of 3D printing objects from melted plastic filament. The hot plastic exits from the nozzle and fuses with the part just below, adding a layer of material to the object being formed. Since the filament can only be deposited on top of an existing surface, overhangs require a disposable support structure to be printed. In order to improve the stability of the support structure and reduce its consumption, a sparse tree support structure generation algorithm is presented. Different from the tradition algorithm, the region needs to be supported for each filament is calculated and the support structure fits the FDM better. The support structure is divided into three categories, and the multi-objective programming problem is decomposed. Experimental results show that supports generated by this algorithm consume less time and materials and are more stable.
-
Key words:
- Rapid prototyping /
- 3D printing /
- supports /
- fused deposition modeling
-
表 1 Meshmixer、Makerware及本文算法打印结果数据对比
Table 1 Printing results comparison among Meshmixer,Makerware and our algorithm
模型 S(mm3) W(g) Meshmixer Makerware 本文算法 TP(s) WS(g) TA(s) TP(s) WP(g) TA(s) TP(s) WS(g) TA(s) Fandisk 64×40×52 23.35 80 4.67 10 62 5.37 8 66 2.8 11 Element 34×70×29 15.34 70 2.91 12 45 4.75 14 51 2.15 19 Umbrela 50×50×49 8.72 70 1.48 8 42 2 9 45 0.78 8 -
[1] Allen S, Dutta D. Determination and evaluation of support structures in layered manufacturing. Journal of Design and Manufacturing, 1995, 5(3):153-162 [2] Snead D E, Smalley D R, Cohen A L, Alison J W, Vorgitch T J, Chen T P. Boolean Layer Comparison Slice, U.S. Patent 6333741, December 2001. [3] Strano G, Hao L, Everson R M, Evans K E. A new approach to the design and optimisation of support structures in additive manufacturing. The International Journal of Advanced Manufacturing Technology, 2013, 66(9-12):1247-1254 doi: 10.1007/s00170-012-4403-x [4] Huang X M, Ye C S, Wu S Y, Guo K B, Mo J H. Sloping wall structure support generation for fused deposition modeling. The International Journal of Advanced Manufacturing Technology, 2009, 42(11-12):1074-1081 doi: 10.1007/s00170-008-1675-2 [5] Heide E K. Method for Generating and Building Support Structures with Deposition-Based Digital Manufacturing Systems, U.S. Patent 8983643, January 2010. [6] 陈之佳, 王从军, 张李超. 基于直线扫描的FDM支撑自动生成算法. 华中科技大学学报(自然科学版), 2004, 32(6):60-62 http://www.cnki.com.cn/Article/CJFDTOTAL-HZLG200406021.htmChen Zhi-Jia, Wang Cong-Jun, Zhang Li-Chao. An algorithm of automatic support generation of FDM based on linescan. Journal of Huazhong University of Science and Technology(Nature Science Edition), 2004, 32(6):60-62 http://www.cnki.com.cn/Article/CJFDTOTAL-HZLG200406021.htm [7] Wang W M, Wang T Y, Yang Z W, Liu L G, Tong X, Tong W H, Deng J S, Chen F L, Liu X P. Cost-effective printing of 3D objects with skin-frame structures. ACM Transactions on Graphics, 2013, 32(5):177 http://dl.acm.org/citation.cfm?id=2508382&picked=formats [8] Dumas J, Hergel J, Lefebvre S. Bridging the gap:automated steady scaffoldings for 3D printing. ACM Transactions on Graphics, 2014, 33(4):98 http://dl.acm.org/citation.cfm?id=2601097.2601153 [9] Kritchman E, Gothait H, Miller G. System and Method for Printing and Supporting Three Dimensional Objects, U.S. Patent 20080211124, April 2008. [10] Prévost R, Whiting E, Lefebvre S, Sorkine-Hornung O. Make it stand:balancing shapes for 3d fabrication. ACM Transactions on Graphics, 2013, 32(4):81 http://dl.acm.org/citation.cfm?doid=2461912.2461957 [11] Stava O, Vanek J, Benes B, Carr N, Měch R. Stress relief:improving structural strength of 3D printable objects. ACM Transactions on Graphics, 2012, 31(4):48 [12] Lu L, Sharf A, Zhao H S, Wei Y, Fan Q N, Chen X L, Savoye Y, Tu C H, Cohen-Or D, Chen B Q. Build-to-last:strength to weight 3D printed objects. ACM Transactions on Graphics, 2014, 33(4):97 [13] Zhang X L, Xia Y, Wang J Y, Yang Z W, Tu C H, Wang W P. Medial axis tree——an internal supporting structure for 3D printing. Computer Aided Geometric Design, 2015, 35-36:149-162 doi: 10.1016/j.cagd.2015.03.012