[1]
|
Nayar S K, Narasimhan S G. Vision in bad weather. In:Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra, Greece:IEEE, 1999. 820-827
|
[2]
|
Narasimhan S G, Nayar S K. Chromatic framework for vision in bad weather. In:Proceedings of the 2000 IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, SC, USA:IEEE, 2000. 598-605
|
[3]
|
Narasimhan S G, Nayar S K. Contrast restoration of weather degraded images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6):713-724 doi: 10.1109/TPAMI.2003.1201821
|
[4]
|
Schechner Y Y, Narasimhan S G, Nayar S K. Polarization-based vision through haze. Applied Optics, 2003, 42(3):511-525 doi: 10.1364/AO.42.000511
|
[5]
|
Namer E, Schechner Y Y. Advanced visibility improvement based on polarization filtered images. In:Proceedings of the 2005 SPIE 5888, Polarization Science and Remote Sensing II. San Diego, USA:SPIE, 2005. 36-45
|
[6]
|
Tan R T. Visibility in bad weather from a single image. In:Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK, USA:IEEE, 2008. 1-8 http://www.oalib.com/references/16892104
|
[7]
|
Fattal R. Single image dehazing. ACM Transactions on Graphics, 2008, 27(3):Article No. 72 http://www.oalib.com/references/15079874
|
[8]
|
He K M, Sun J, Tang X O. Single image haze removal using dark channel prior. In:Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA:IEEE, 2009. 1956-1963
|
[9]
|
吴迪, 朱青松.图像去雾的最新研究进展.自动化学报, 2015, 41(2):221-239 http://www.aas.net.cn/CN/abstract/abstract18603.shtmlWu Di, Zhu Qing-Song. The latest research progress of image dehazing. Acta Automatica Sinica, 2015, 41(2):221-239 http://www.aas.net.cn/CN/abstract/abstract18603.shtml
|
[10]
|
He K M, Sun J, Tang X O. Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6):1397-1409 doi: 10.1109/TPAMI.2012.213
|
[11]
|
Pang J H, Au O C, Guo Z. Improved single image dehazing using guided filter. In:Proceedings of the 2011 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference. Xi'an, China:Asia-Pacific Signal and Information Processing Association, Hong Kong, 2011. 522-525
|
[12]
|
Shi Z W, Long J, Tang W, Zhang C S. Single image dehazing in inhomogeneous atmosphere. Optik-International Journal for Light and Electron Optics, 2014, 125(15):3868-3875 doi: 10.1016/j.ijleo.2014.01.170
|
[13]
|
Tarel J P, Hautiere N. Fast visibility restoration from a single color or gray level image. In:Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan:IEEE, 2009. 2201-2208 http://www.oalib.com/references/16889213
|
[14]
|
禹晶, 李大鹏, 廖庆敏.基于物理模型的快速单幅图像去雾方法.自动化学报, 2011, 37(2):143-149 doi: 10.3724/SP.J.1004.2011.00143Yu Jing, Li Da-Peng, Liao Qing-Min. Physics-based fast single image fog removal. Acta Automatica Sinica, 2011, 37(2):143-149 doi: 10.3724/SP.J.1004.2011.00143
|
[15]
|
Liu X, Zeng F X, Huang Z T, Ji Y F. Single color image dehazing based on digital total variation filter with color transfer. In:Proceedings of the 20th IEEE International Conference on Image Processing. Melbourne, Australia:IEEE, 2013. 909-913
|
[16]
|
张小刚, 唐美玲, 陈华, 汤红忠.一种结合双区域滤波和图像融合的单幅图像去雾算法.自动化学报, 2014, 40(8):1733-1739 http://www.aas.net.cn/CN/abstract/abstract18440.shtmlZhang Xiao-Gang, Tang Mei-Ling, Chen Hua, Tang Hong-Zhong. A dehazing method in single image based on double-area filter and image fusion. Acta Automatica Sinica, 2014, 40(8):1733-1739 http://www.aas.net.cn/CN/abstract/abstract18440.shtml
|
[17]
|
刘海波, 杨杰, 吴正平, 张庆年, 邓勇.基于暗通道先验和Retinex理论的快速单幅图像去雾方法.自动化学报, 2015, 41(7):1264-1273 http://www.aas.net.cn/CN/abstract/abstract18700.shtmlLiu Hai-Bo, Yang Jie, Wu Zheng-Ping, Zhang Qing-Nian, Deng Yong. A fast single image dehazing method based on dark channel prior and Retinex theory. Acta Automatica Sinica, 2015, 41(7):1264-1273 http://www.aas.net.cn/CN/abstract/abstract18700.shtml
|
[18]
|
Tang K T, Yang J C, Wang J. Investigating haze-relevant features in a learning framework for image dehazing. In:Proceedings of the 2014 IEEE International Conference on Computer Vision and Pattern Recognition. Columbus, Ohio, USA:IEEE, 2014. 2995-3002
|
[19]
|
Wang Y K, Fan C T. Single image defogging by multiscale depth fusion. IEEE Transactions on Image Processing, 2014, 23(11):4826-4837 doi: 10.1109/TIP.2014.2358076
|
[20]
|
褚宏莉, 李元祥, 周则明, 沈霁.基于黑色通道的图像快速去雾优化算法.电子学报, 2013, 41(4):791-797 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201304027.htmChu Hong-Li, Li Yuan-Xiang, Zhou Ze-Ming, Shen Ji. Optimized fast dehazing method based on dark channel prior. Acta Electronica Sinica, 2013, 41(4):791-797 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201304027.htm
|
[21]
|
Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D:Nonlinear Phenomena, 1992, 60(1-4):259-268 doi: 10.1016/0167-2789(92)90242-F
|
[22]
|
Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 2010, 3(1):1-122 doi: 10.1561/2200000016
|
[23]
|
Goldstein T, Osher S. The split Bregman method for L1-regularized problems. SIAM Journal on Imaging Sciences, 2009, 2(2):323-343 doi: 10.1137/080725891
|