2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

特征联合和旋转不变空间分割联合的局部图像描述符

许允喜 陈方

许允喜, 陈方. 特征联合和旋转不变空间分割联合的局部图像描述符. 自动化学报, 2016, 42(4): 617-630. doi: 10.16383/j.aas.2016.c150206
引用本文: 许允喜, 陈方. 特征联合和旋转不变空间分割联合的局部图像描述符. 自动化学报, 2016, 42(4): 617-630. doi: 10.16383/j.aas.2016.c150206
XU Yun-Xi, CHEN Fang. Local Image Descriptor of Feature Combination and Rotation Invariant Space Division Combination. ACTA AUTOMATICA SINICA, 2016, 42(4): 617-630. doi: 10.16383/j.aas.2016.c150206
Citation: XU Yun-Xi, CHEN Fang. Local Image Descriptor of Feature Combination and Rotation Invariant Space Division Combination. ACTA AUTOMATICA SINICA, 2016, 42(4): 617-630. doi: 10.16383/j.aas.2016.c150206

特征联合和旋转不变空间分割联合的局部图像描述符

doi: 10.16383/j.aas.2016.c150206
基金项目: 

国家自然科学基金 61370173

湖州市重点科技创新团队 2012KC04

详细信息
    作者简介:

    陈方, 湖州师范学院信息工程学院讲师.主要研究方向为计算机视觉和图像处理.E-mail:cf@hutc.zj.cn

    通讯作者:

    许允喜, 湖州师范学院信息工程学院讲师.主要研究方向为计算机视觉, 图像处理和机器学习.本文通信作者.E-mail:xuyunxi@hutc.zj.cn

Local Image Descriptor of Feature Combination and Rotation Invariant Space Division Combination

Funds: 

National Natural Science Foundation of China 61370173

Key Science and Technology Innovation Team of Huzhou City 2012KC04

More Information
    Author Bio:

    Lecturer at the School of Information Engineering, Huzhou University. Her research interest covers computer vision and image processing

    Corresponding author: XU Yun-Xi Lecturer at the School of Information Engineering, Huzhou University. His research interest covers computer vision, image processing, and machine learning. Corresponding author of this paper
  • 摘要: 提出了一种新的局部图像描述符: 特征联合和旋转不变空间分割联合描述符(Feature combination and rotation invariant space division combination descriptor, FCSCD). 提出了一种新的局部特征: WLBP (Weber local binary pattern), 该特征由局部二进制模式和韦伯二进制差分激励联合得到. 提出了一种新的用于特征汇聚的旋转不变空间分割方法, 该方法由强度序空间分割和圆环空间分割联合得到. WLBP在局部旋转不变坐标系计算得到, 强度序和圆环空间分割本身也具有旋转不变性, 所以FCSCD描述符在不需要计算图像块主方向下保持了旋转不变性. 与现有的局部描述符相比, 本文的联合方法编码了多种类型的信息在描述符直方图中, 所以FCSCD辨别能力更强, 鲁棒性更强. 图像匹配实验结果表明了本文方法的有效性和优越性, 所提出的描述符具有很高的匹配性能, 优于其他的主流局部描述符(SIFT、CS-LBP、OSID、LIOP、EOD和MRRID).
  • 图  1  局部旋转不变坐标系统

    Fig.  1  Local rotation-invariant coordinate system

    图  2  相互重叠的两个圆环区域划分

    Fig.  2  Two overlapping annular regions division

    图  3  通过联合空间分割汇聚支撑域中局部特征的流程

    Fig.  3  The procedure of pooling local features in a support region by the combination of space divisions

    图  4  四个支撑区域选择及其归一化

    Fig.  4  The selection of four support regions and their normalization

    图  5  实验数据集

    Fig.  5  Data sets for the experiments

    图  6  不同参数下FCSCD 描述符的匹配性能

    Fig.  6  Matching performances of FCSCD under di®erent parameter settings

    图  7  各种联合情况下FCSCD 描述符的匹配性能对比

    Fig.  7  Matching performance comparisons of FCSCD under di®erent combination situations

    图  8  多支撑域条件下FCSCD 描述符的匹配性能对比

    Fig.  8  Matching performance comparisons of FCSCD under multiple support regions

    图  9  FCSCD 描述符和其他主流描述符的匹配性能对比

    Fig.  9  Matching performance comparisons of FCSCD and other popular descriptors

    图  10  FCSCD 描述符和其他主流描述符的图像匹配图

    Fig.  10  Image matching results of FCSCD and other popular descriptors

    表  1  FCSCD 描述符的参数设置

    Table  1  The setting of parameters for FCSCD descriptor

    参数设置值
    k3, 4, 5
    d2, 3
    下载: 导出CSV

    表  2  描述符运行时间对比

    Table  2  Comparison of run-time of descriptors

    SIFTCS-LBPOSIDLIOPMRRIDMRRID(4)EODFCSCD
    耗时(ms)2.41.62.13.12.610.43.32.7
    下载: 导出CSV
  • [1] Dong Z L, Zhang G F, Jia J Y, Bao H J. Efficient keyframe-based real-time camera tracking. Computer Vision and Image Understanding, 2014, 118: 97-110 doi: 10.1016/j.cviu.2013.08.005
    [2] Cummins M, Newman P. Appearance-only SLAM at large scale with FAB-MAP 2.0. The International Journal of Robotics Research, 2011, 30(9): 1100-1123 doi: 10.1177/0278364910385483
    [3] 桂振文, 吴侹, 彭欣. 一种融合多传感器信息的移动图像识别方法. 自动化学报, 2015, 41(8): 1394-1404 http://www.aas.net.cn/CN/abstract/abstract18714.shtml

    Gui Zhen-Wen, Wu Ting, Peng Xin. A novel recognition approach for mobile image fusing inertial sensors. Acta Automatica Sinica, 2015, 41(8): 1394-1404 http://www.aas.net.cn/CN/abstract/abstract18714.shtml
    [4] Zhou W G, Li H Q, Hong R C, Lu Y J, Tian Q. BSIFT: toward data-independent codebook for large scale image search. IEEE Transactions on Image Processing, 2015, 24(3): 967-979 doi: 10.1109/TIP.2015.2389624
    [5] 刘培娜, 刘国军, 郭茂祖, 刘扬, 李盼. 非负局部约束线性编码图像分类算法. 自动化学报, 2015, 41(7): 1235-1243 http://www.aas.net.cn/CN/abstract/abstract18697.shtml

    Liu Pei-Na, Liu Guo-Jun, Guo Mao-Zu, Liu Yang, Li Pan. Image classification based on non-negative locality-constrained linear coding. Acta Automatica Sinica, 2015, 41(7): 1235-1243 http://www.aas.net.cn/CN/abstract/abstract18697.shtml
    [6] 祝继华, 周颐, 王晓春, 邗汶锌, 马亮. 基于图像配准的栅格地图拼接方法. 自动化学报, 2015, 41(2): 285-294 http://www.aas.net.cn/CN/abstract/abstract18607.shtml

    Zhu Ji-Hua, Zhou Yi, Wang Xiao-Chun, Han Wen-Xin, Ma Liang. Grid map merging approach based on image registration. Acta Automatica Sinica, 2015, 41(2): 285-294 http://www.aas.net.cn/CN/abstract/abstract18607.shtml
    [7] Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110 doi: 10.1023/B:VISI.0000029664.99615.94
    [8] Ke Y, Sukthankar R. PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2004. II-506-II-513
    [9] 颜雪军, 赵春霞, 袁夏. 2DPCA-SIFT: 一种有效的局部特征描述方法. 自动化学报, 2014, 40(4): 675-682 http://www.aas.net.cn/CN/abstract/abstract18333.shtml

    Yan Xue-Jun, Zhao Chun-Xia, Yuan Xia. 2DPCA-SIFT: an efficient local feature descriptor. Acta Automatica Sinica, 2014, 40(4): 675-682 http://www.aas.net.cn/CN/abstract/abstract18333.shtml
    [10] Mikolajczyk K, Schmid C. A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630 doi: 10.1109/TPAMI.2005.188
    [11] Bay H, Ess A, Tuytelaars T, van Gool L. Speeded-up robust features (SURF). Computer Vision and Image Understanding, 2008, 110(3): 346-359 doi: 10.1016/j.cviu.2007.09.014
    [12] Tola E, Lepetit V, Fua P. DAISY: an efficient dense descriptor applied to wide-baseline stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 815-830 doi: 10.1109/TPAMI.2009.77
    [13] Brown M, Gang H, Winder S. Discriminative learning of local image descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(1): 43-57 doi: 10.1109/TPAMI.2010.54
    [14] Simonyan K, Vedaldi A, Zisserman A. Learning local feature descriptors using convex optimisation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(8): 1573-1585 doi: 10.1109/TPAMI.2014.2301163
    [15] Heikkilä M, Pietikäinen M, Schmid C. Description of interest regions with local binary patterns. Pattern Recognition, 2009, 42(3): 425-436 doi: 10.1016/j.patcog.2008.08.014
    [16] Tang F, Lim S H, Change N L, Tao H. A novel feature descriptor invariant to complex brightness changes. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 2631-2638
    [17] Chen J, Shan S G, He C, Zhao G Y, Pietikainen M, Chen X L, Gao W. WLD: a robust local image descriptor. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1705-1720 doi: 10.1109/TPAMI.2009.155
    [18] Kim B, Yoo H, Sohn K. Exact order based feature descriptor for illumination robust image matching. Pattern Recognition, 2013, 46(12): 3268-3278 doi: 10.1016/j.patcog.2013.04.015
    [19] Lazebnik S, Schmid C, Ponce J. A sparse texture representation using local affine regions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1265-1278 doi: 10.1109/TPAMI.2005.151
    [20] Fan B, Wu F C, Hu Z Y. Rotationally invariant descriptors using intensity order pooling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10): 2031-2045 doi: 10.1109/TPAMI.2011.277
    [21] Wang Z H, Fan B, Wu F C. Local intensity order pattern for feature description. In: Proceedings of the 2011 IEEE Conference on Computer Vision. Barcelona, Spain: IEEE, 2011. 603-610
    [22] Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, Kadir T, van Gool L. A comparison of affine region detectors. International Journal of Computer Vision, 2005, 65(1-2): 43-72 doi: 10.1007/s11263-005-3848-x
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1864
  • HTML全文浏览量:  269
  • PDF下载量:  1160
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-10
  • 录用日期:  2015-12-11
  • 刊出日期:  2016-04-01

目录

    /

    返回文章
    返回