2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CBMeMBer滤波器序贯蒙特卡罗实现新方法的研究

陈辉 韩崇昭

陈辉, 韩崇昭. CBMeMBer滤波器序贯蒙特卡罗实现新方法的研究. 自动化学报, 2016, 42(1): 26-36. doi: 10.16383/j.aas.2016.c150182
引用本文: 陈辉, 韩崇昭. CBMeMBer滤波器序贯蒙特卡罗实现新方法的研究. 自动化学报, 2016, 42(1): 26-36. doi: 10.16383/j.aas.2016.c150182
CHEN Hui, HAN Chong-Zhao. A New Sequential Monte Carlo Implementation of Cardinality Balanced Multi-target Multi-Bernoulli Filter. ACTA AUTOMATICA SINICA, 2016, 42(1): 26-36. doi: 10.16383/j.aas.2016.c150182
Citation: CHEN Hui, HAN Chong-Zhao. A New Sequential Monte Carlo Implementation of Cardinality Balanced Multi-target Multi-Bernoulli Filter. ACTA AUTOMATICA SINICA, 2016, 42(1): 26-36. doi: 10.16383/j.aas.2016.c150182

CBMeMBer滤波器序贯蒙特卡罗实现新方法的研究

doi: 10.16383/j.aas.2016.c150182
基金项目: 

国家自然科学基金创新研究群体 61221063

甘肃省高等学校科研项目 2014A-035

国家自然科学基金 61370037, 61005026, 61473217

国家重点基础研究发展计划(973计划) 2013CB329405

详细信息
    作者简介:

    韩崇昭 西安交通大学电子与信息工程学院教授.主要研究方向为多源信息融合,随机控制与自适应控制,非线性频谱分析.E-mail:czhan@mail.xjtu.edu.cn

    通讯作者:

    陈辉 西安交通大学电子与信息工程学院综合自动化研究所博士研究生.主要研究方向为目标跟踪.本文通信作者.E-mail:huich78@hotmail.com

A New Sequential Monte Carlo Implementation of Cardinality Balanced Multi-target Multi-Bernoulli Filter

Funds: 

Foundation for Innovative Research Groups of the National Natural Science Foundation of China 61221063

and Foundation of Higher Education of Gansu Province 2014A-035

National Natural Science Foundation of China 61370037, 61005026, 61473217

Supported by National Basic Research Program of China(973 Program) 2013CB329405

More Information
    Author Bio:

    Professor at the School of Electronic and Information Engineering, Xi' an Jiaotong University. His research interest covers multi-source information fusion, stochastic control and adaptive control, and nonlinear spectral analysis

    Corresponding author: CHEN Hui Ph.D. candidate at the Institute of Integrated Automation, School of Electronic and Information Engineering, Xi' an Jiaotong University. His main research interest is target tracking. Corresponding author of this paper
  • 摘要: 为提升多伯努利滤波器序贯蒙特卡罗(Sequential Monte Carlo, SMC)实现中粒子采样的有效性,提出一种CBMeMBer辅助粒子滤波(Auxiliary particle filter, APF)实现的新方法.首先,利用多伯努利后验概率密度选择适合于CBMeMBer滤波器的辅助变量去重新定义采样问题.分别选择量测和先验密度分量作为辅助变量,确保最终的状态粒子能够集中在真实目标量测对应航迹的伯努利概率密度上进行采样,以使粒子向似然函数的峰值区移动,得到更为精确的多目标多伯努利(Multi-target multi-Bernoulli, MeMBer)后验概率密度的估计.同时,文中深入研究并给出了在量测更新和漏检情况下辅助变量以及多目标状态采样分布函数的设计,并研究利用渐近更新(Progressive correction, PC)算法对先验密度分量的量测更新进行迭代逼近计算,以提高最终分布函数求解的准确度.最后,针对两个典型非线性多目标跟踪问题的应用验证了算法的有效性.
  • 图  1  实际目标的轨迹

    Fig.  1  Actual target trajectories

    图  2  传统SMC-CBMeMBer滤波器的目标跟踪效果

    Fig.  2  Target tracking with the traditional SMC-CBMeMBer filter

    图  3  本文算法的目标跟踪效果

    Fig.  3  Target tracking with the proposed filter

    图  4  多目标位置估计OSPA的比较

    Fig.  4  Tracking performance comparison for position OSPA

    图  5  目标个数估计的比较

    Fig.  5  Tracking performances of target number estimations

    图  6  传感器轨迹

    Fig.  6  Sensor trajectory

    图  7  传统SMC-CBMeMBer滤波器的BOT跟踪效果

    Fig.  7  Bearings-only tracking with the traditional SMC-CBMeMBer filter

    图  8  本文算法的BOT跟踪效果

    Fig.  8  Bearings-only tracking with the proposed filter

    图  9  多目标位置估计OSPA的比较

    Fig.  9  Tracking performance comparison for position OSPA

    图  10  目标个数估计的比较

    Fig.  10  Tracking performances of target number estimations

    表  1  不同采样规模下的性能比较

    Table  1  Tracking performance versus sampling size

    $L_s$ 100 300 500 1000 1500
    BFOSPA~(m) 32.43 23.64 20.53 17.42 17.04
    时间(s) 0.41 1.78 3.057.31 11.31
    APFOSPA(m) 17.18 16.41 16.26 16.18 16.12
    时间(s) 1.27 4.19 7.23 18.78 33.70
    下载: 导出CSV
  • [1] Mahler R P S. Advances in Statistical Multisource-Multitarget Information Fusion. Norwood, MA:Artech House, 2014. 120-122
    [2] Mahler R P S. Multitarget Bayes filtering via first-order multitarget moments. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4):1152-1178 doi: 10.1109/TAES.2003.1261119
    [3] Mahler R P S. PHD filters of higher order in target number. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4):1523-1543 doi: 10.1109/TAES.2007.4441756
    [4] Mahler R P S, Vo B T, Vo B N. CPHD filtering with unknown clutter rate and detection profile. IEEE Transactions on Signal Processing, 2011, 59(8):3497-3513 doi: 10.1109/TSP.2011.2128316
    [5] Mahler R. Statistical Multisource Multitarget Information Fusion. Norwood, MA:Artech House, 2007. 655-667
    [6] Vo B T, Vo B N, Cantoni A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Transactions on Signal Processing, 2009, 57(2):409-423 doi: 10.1109/TSP.2008.2007924
    [7] Reuter S, Vo B T, Vo B N, Dietmayer K. The labeled multi-Bernoulli filter. IEEE Transactions on Signal Processing, 2014, 62(12):3246-3260 doi: 10.1109/TSP.2014.2323064
    [8] Chong N, Wong S, Vo B T, Sven N, Murray I. Multiple moving speaker tracking via degenerate unmixing estimation technique and cardinality balanced multi-target multi-Bernoulli filter(DUET-CBMeMBer). In:Proceedings of the 9th IEEE International Conference on Intelligent Sensors, Sensor Networks and Information Processing(ISSNIP). Singapore:IEEE, 2014. 1-6
    [9] Beard M, Reuter S, Granstrom K, Vo B T, Vo B N, Scheel A. A generalised labelled multi-Bernoulli filter for extended multi-target tracking. In:Proceedings of the 18th International Conference on Information Fusion. Washington D.C.:IEEE, 2015. 991-998
    [10] Hoang H G, Vo B T, Vo B N. A fast implementation of the generalized labeled multi-Bernoulli filter with joint prediction and update. In:Proceedings of the 18th International Conference on Information Fusion. Washington D.C.:IEEE, 2015. 999-1006
    [11] Zhang G H, Lian F, Han C Z. CBMeMBer filters for nonstandard targets, I:Extended targets. In:Proceedings of the 17th International Conference on Information Fusion. Salamanca:IEEE, 2014. 1-6
    [12] Hoseinnezhad R, Vo B N, Vo B T, Suter D. Bayesian integration of audio and visual information for multi-target tracking using a CB-MeMBer filter. In:Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). Prague:IEEE, 2011. 2300-2303
    [13] 连峰, 韩崇昭, 李晨. 多模型GM-CBMeMBer滤波器及航迹形成. 自动化学报, 2014, 40(2):336-347 http://www.aas.net.cn/CN/abstract/abstract18295.shtml

    Lian Feng, Han Chong-Zhao, Li Chen. Multiple-model GM-CBMeMBer filter and track continuity. Acta Automatica Sinica, 2014, 40(2):336-347 http://www.aas.net.cn/CN/abstract/abstract18295.shtml
    [14] Pitt M K, Shephard N. Filtering via simulation:auxiliary particle filters. Journal of the American Statistical Association, 1999, 94(446):590-599 doi: 10.1080/01621459.1999.10474153
    [15] Ubeda-Medina L, Garcia-Fernandez A F, Grajal J. Generalizations of the auxiliary particle filter for multiple target tracking. In:Proceedings of the 17th Conference on Information Fusion. Salamanca:IEEE, 2014. 1-8
    [16] Ristic B, Clark D, Vo B N. Improved SMC implementation of the PHD filter. In:Proceedings of the 13th Conference on Information Fusion. Edinburgh, UK:IEEE, 2010. 1-8
    [17] Baser E, Efe M. A novel auxiliary particle PHD filter. In:Proceedings of the 15th International Conference on Information Fusion. Singapore:IEEE, 2012. 165-172
    [18] Whiteley N, Singh S, Godsill S. Auxiliary particle implementation of probability hypothesis density filter. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3):1437-1454 doi: 10.1109/TAES.2010.5545199
    [19] Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 2000, 10(3):197-208 doi: 10.1023/A:1008935410038
    [20] Doucet A, Gordon N J, Krishnamurthy V. Particle filters for state estimation of jump Markov linear systems. IEEE Transactions on Signal Processing, 2001, 49(3):613-624 doi: 10.1109/78.905890
    [21] Arulampalam M S, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2):174-188 doi: 10.1109/78.978374
    [22] Musso C, Oudjane N, Le Gland F. Improving regularised particle filters. Sequential Monte Carlo Methods in Practice. New York:Springer-Verlag, 2001. 247-271
    [23] Morelande M R, Skvortsov A. Radiation field estimation using a Gaussian mixture. In:Proceedings of the 12th International Conference on Information Fusion. Seattle, WA:IEEE, 2009. 2247-2254
    [24] Schuhmacher D, Vo B T, Vo B N. A consistent metric for performance evaluation of multi-object filters. IEEE Transactions on Signal Processing, 2008, 56(8):3447-3457 doi: 10.1109/TSP.2008.920469
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  2130
  • HTML全文浏览量:  289
  • PDF下载量:  1372
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-08
  • 录用日期:  2015-10-19
  • 刊出日期:  2016-01-01

目录

    /

    返回文章
    返回