Identification of Continuous State-space Model Parameters for a Class of MIMO Systems:A Frequency Domain Approach
-
摘要: 在连续时间状态空间模型的参数辨识中,针对系统状态微分项获取困难这一问题,对输入、状态及输出序列应用离散傅里叶变换,得到复数域线性回归方程,并给出了不同形式的最小二乘解估计式.以飞行器多输入多输出(Multiple-input multiple-output, MIMO)状态空间模型为例,设计正交多正弦信号对系统进行多通道同时激励,在一次激励的情况下就可以辨识出所有模型参数,从而提高辨识实验效率.仿真实验证明了方法的有效性和结果的准确性.Abstract: In parameter identification of continuous-time state-space model, one of the difficulties is obtaining the derivative values of system states. To resolve this problem, we propose a discrete Fourier transform of the system inputs, states, and outputs sequences. As a result, a complex domain linear regression equation is derived. Then, different forms of the solution for the least-squares regression equation are presented. For the case study of a multiple-input multiple-output(MIMO) state-space model of an aircraft, orthogonal multi-sine signals are designed to excite all system input channels, thus, all model parameters can be identified simultaneously so as to enhance the efficiency of identification. Simulations show the effectiveness of the proposed method and accuracy of the results.
-
表 1 不同频域最小二乘算法的结果比较
Table 1 Comparison of results with different frequency domain least-square algorithms
LS algorithm ${\hat{A}_{{\text{lon}}}}$ $\hat{B}_{{\rm{lon}}}$ LS_Re -0.0161 -3.8292 -1.0548 -32.0137 10.1047 -0.0003 -0.7514 0.9272 -0.0020 -0.1613 -0.0004 -4.1575 -1.3190 -0.1572 -14.1069 0.0009 -0.0693 1.0046 0.0579 0.0139 LS_Im -0.0175 -3.7048 -1.0633 -32.1205 10.0944 -0.0002 -0.7543 0.9274 0.0005 -0.1609 0.0026 -4.3783 -1.3070 0.0307 -14.0746 0.0019 -0.1118 1.0048 0.0929 0.0298 LS_EAM -0.0165 -3.7773 -1.0591 -32.0588 10.1050 -0.0002 -0.7523 0.9273 -0.0012 -0.1613 0.0002 -4.2252 -1.3142 -0.0985 -14.1047 0.0010 -0.0655 1.0036 0.0544 0.0161 -
[1] Jategaonkar R V. Flight Vehicle System Identification(A Time Domain Methodology). Reston:American Institute of Aeronautics and Astronautics, 2006. [2] Pintelon R, Schoukens J. System Identification:A Frequency Domain Approach(2nd Edition). New York:Wiley-IEEE Press, 2012. [3] Marelli D, Fu M Y. Exact identification of continuous-time systems from sampled data. In:Proceedings of 2007 IEEE International Conference on Acoustics, Speech and Signal Processing. Honolulu, HI:IEEE, 2007. III-757-III-760 [4] 李幼凤, 苏宏业, 褚健. 子空间模型辨识方法综述. 化工学报, 2006, 57(3):473-479 http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ200603000.htmLi You-Feng, Su Hong-Ye, Chu Jian. Overview on subspace model identification methods. Journal of Chemical Industry and Engineering(China), 2006, 57(3):473-479 http://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ200603000.htm [5] Van Overschee P, De Moor B L. Subspace Identification for Linear Systems:Theory, Implementation, Applications. Dordrecht:Kluwer Academic Publishers, 1996. [6] McKelvey T, Akcay H, Ljung L. Subspace-based multivariable system identification from frequency response data. IEEE Transactions on Automatic Control, 1996, 41(7):960-979 http://sites-test.uclouvain.be/socn/www/Documents/lec2a.pdf [7] Houtzager I, van Wingerden J, Verhaegen M. Recursive predictor-based subspace identification with application to the real-time closed-loop tracking of flutter. IEEE Transactions on Control Systems Technology, 2012, 20(4):934-949 doi: 10.1109/TCST.2011.2157694 [8] Verhaegen M, Dewilde P. Subspace model identification Part 1. The output-error state-space model identification class of algorithms. International Journal of Control, 1992, 56(5):1187-1210 doi: 10.1080/00207179208934363 [9] Verhaegen M, Dewilde P. Subspace model identification Part 2. Analysis of the elementary output-error state-space model identification algorithm. International Journal of Control, 1992, 56(5):1211-1241 doi: 10.1080/00207179208934364 [10] Verhaegen M. Identification of the deterministic part of MIMO state space models given in innovations form from input-output data. Automatica, 1994, 30(1):61-74 doi: 10.1016/0005-1098(94)90229-1 [11] Van Overschee P, De Moor B. N4SID:subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica, 1994, 30(1):75-93 doi: 10.1016/0005-1098(94)90230-5 [12] Larimore W E. Canonical variate analysis in identification, filtering, and adaptive control. In:Proceedings of the 29th IEEE Conference on Decision and Control. Honolulu, HI:IEEE, 1990. 596-604 [13] Tischler M B, Remple R K[著], 张怡哲, 左军毅[译]. 飞机和旋翼机系统辨识:工程方法和飞行试验案例. 北京:航空工业出版社, 2012.Tischler M B, Remple R K[Author], Zhang Yi-Zhe, Zuo Jun-Yi[Translator]. Aircraft and Rotorcraft System Identification——Engineering Methods with Flight Test Examples. Beijing:Aviation Industry Press, 2012. [14] Klein V. Maximum Likelihood Method for Estimating Airplane Stability and Control Parameters from Flight Data in the Frequency Domain. NASA Technical Paper 1637, 1980. [15] Morelli E A. Real-time parameter estimation in the frequency domain. Journal of Guidance, Control, and Dynamics, 2000, 23(5):812-818 doi: 10.2514/2.4642 [16] Tischler M B. System identification methods for aircraft flight control development and validation. Advances in Aircraft Flight Control. London:Taylor & Francis, 1995. 35-69 [17] Haverkamp B R J, Chou C T, Verhaegen M, Johansson R. Identification of continuous-time MIMO state space models from sampled data, in the presence of process and measurement noise. In:Proceedings of the 35th IEEE Conference on Decision and Control. Kobe:IEEE, 1996. 1539-1544 [18] Sinha N K. Identification of continuous-time systems from samples of input-output data:an introduction. Sadhana, 2000, 25(2):75-83 doi: 10.1007/BF02703750 [19] Rao G P, Unbehauen H. Identification of continuous-time systems. IEE Proceedings——Control Theory and Applications, 2006, 153(2):185-220 doi: 10.1049/ip-cta:20045250 [20] Olofsson B, Sornmo O, Robertsson A, Johansson R. Continuous-time gray-box identification of mechanical systems using subspace-based identification methods. In:Proceedings of the 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics(AIM). Besacon:IEEE, 2014. 327-333 [21] 丁锋. 系统辨识新论. 北京:科学出版社, 2013.Ding Feng. System Identification:New Theory and Methods. Beijing:Science Press, 2013. [22] 梅长林, 王宁. 近代回归分析方法. 北京:科学出版社, 2012.Mei Chang-Lin, Wang Ning. Modern Regression Analysis. Beijing:Science Press, 2012. [23] McGrail A K. OnBoard Parameter Identification for a Small UAV[Ph.D. dissertation]. West Virginia University, USA, 2012. [24] 吴密霞, 刘春玲. 多元统计分析. 北京:科学出版社, 2014.Wu Mi-Xia, Liu Chun-Ling. Multivariate Statistical Analysis. Beijing:Science Press, 2014. [25] 王桂松, 史建红, 尹素菊, 吴密霞. 线性模型引论. 北京:科学出版社, 2004.Wang Gui-Song, Shi Jian-Hong, Yin Su-Ju, Wu Mi-Xia. Introduction to Linear Model. Beijing:Science Press, 2004. [26] Morelli E A. Flight-test experiment design for characterizing stability and control of hypersonic vehicles. Journal of Guidance, Control, and Dynamics, 2009, 32(3):949-959 doi: 10.2514/1.37092 [27] Morelli E A. Flight test maneuvers for efficient aerodynamic modeling. Journal of Aircraft, 2012, 49(6):1857-1867 doi: 10.2514/1.C031699 [28] Russell R S. Non-linear F-16 simulation using Simulink and Matlab. Technique Paper, University of Minnesota, 2003. [29] Phillips K, Gururajan S, Campa G, Seanor B, Gu Y, Merceruio Z, Napolitano M R. Nonlinear aircraft model identification and validation for a fault-tolerant flight control system. In:Proceedings of the 2010 AIAA Atmospheric Flight Mechanics Conference. Toronto, Canada:AIAA, 2010. 期刊类型引用(15)
1. 耿艳利,刘松岳,王希瑞,宣伯凯. 电动下肢假肢多路况控制策略研究. 中国康复医学杂志. 2024(02): 226-231 . 百度学术
2. 汪晓铭,黎林荣,陈长龙,孙洁,张哲文,孟巧玲,喻洪流. 人-机-环境共融的智能假肢膝关节研究进展. 中国生物医学工程学报. 2023(04): 486-501 . 百度学术
3. 韩亚丽,韩子,金壮壮,徐闽海,吴应达. 一种主动型踝关节助力外骨骼设计及性能实验. 仪器仪表学报. 2023(11): 109-118 . 百度学术
4. 刘克平,滕召纬,孙中波,李婉婷. 基于自适应模糊神经网络的下肢关节角度估计. 计算机仿真. 2022(09): 456-461 . 百度学术
5. 盛敏,唐少波. 融合统计和几何特征的运动意图识别方法. 安庆师范大学学报(自然科学版). 2021(01): 34-39 . 百度学术
6. 刘作军,许长寿,陈玲玲,张燕. 智能假肢膝关节的研发要点及其研究进展综述. 包装工程. 2021(10): 54-63 . 百度学术
7. 崔建伟,李志钢,曹尔凡,杜韩,陆普东. 基于人体上肢运动信息的助残手抓取意图识别方法. 中国惯性技术学报. 2021(02): 250-255 . 百度学术
8. 刘磊,杨鹏,刘作军,宋寅卯. 基于多核学习极限学习机的助行机器人运动相容性识别. 高技术通讯. 2021(09): 978-985 . 百度学术
9. 苏本跃,倪钰,盛敏,赵丽丽. 基于改进卷积神经网络的动力下肢假肢运动意图识别. 控制与决策. 2021(12): 3031-3038 . 百度学术
10. 黄品高,黄剑平,黄博俊,方鹏,刘志远,李光林. 实现下肢假肢智能仿生控制的神经功能重建及行走意图识别方法. 中国科学基金. 2021(S1): 227-235 . 百度学术
11. 滕召纬,孙中波,刘克平. 基于自适应模糊神经网络的下肢关节运动意图估计. 长春工业大学学报. 2020(06): 558-562 . 百度学术
12. 盛敏,刘双庆,王婕,苏本跃. 基于GMM-HMM模型的智能下肢假肢运动意图识别. 仪器仪表学报. 2019(05): 169-178 . 百度学术
13. 刘双庆. 基于LSTM深度学习模型的智能下肢假肢运动意图识别. 合肥学院学报(综合版). 2019(05): 96-104 . 百度学术
14. 杨帆,王远,郭鹏程. 针对下肢残障人士的无障碍卫浴产品设计分析. 工业设计. 2019(11): 48-49 . 百度学术
15. 刘磊,陈增强,杨鹏,刘作军. 采用鱼群算法进化极限学习机的假肢步态识别. 振动.测试与诊断. 2019(06): 1225-1231+1360-1361 . 百度学术
其他类型引用(22)
-