[1]
|
Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306 doi: 10.1109/TIT.2006.871582
|
[2]
|
荆楠, 毕卫红, 胡正平, 王林. 动态压缩感知综述. 自动化学报, 2015, 41(1): 22-37 http://www.aas.net.cn/CN/abstract/abstract18580.shtmlJing Nan, Bi Wei-Hong, Hu Zheng-Ping, Wang Lin. A survey on dynamic compressed sensing. Acta Automatica Sinica, 2015, 41(1): 22-37 http://www.aas.net.cn/CN/abstract/abstract18580.shtml
|
[3]
|
沈燕飞, 李锦涛, 朱珍民, 张勇东, 代锋. 基于非局部相似模型的压缩感知图像恢复算法. 自动化学报, 2015, 41(2): 261-272 http://www.aas.net.cn/CN/abstract/abstract18605.shtmlShen Yan-Fei, Li Jin-Tao, Zhu Zhen-Min, Zhang Yong-Dong, Dai Feng. Image reconstruction algorithm of compressed sensing based on nonlocal similarity model. Acta Automatica Sinica, 2015, 41(2): 261-272 http://www.aas.net.cn/CN/abstract/abstract18605.shtml
|
[4]
|
张文林, 牛铜, 屈丹, 李弼程, 裴喜龙. 基于声学特征空间非线性流形结构的语音识别声学模型. 自动化学报, 2015, 41(5): 1024-1033 http://www.aas.net.cn/CN/abstract/abstract18676.shtmlZhang Wen-Lin, Niu Tong, Qu Dan, Li Bi-Cheng, Pei Xi-Long. Feature space nonlinear manifold based acoustic model for speech recognition. Acta Automatica Sinica, 2015, 41(5): 1024-1033 http://www.aas.net.cn/CN/abstract/abstract18676.shtml
|
[5]
|
方标, 黄高明, 高俊. LFM 宽带雷达信号的多通道盲压缩感知模型研究. 自动化学报, 2015, 41(3): 591-600 http://www.aas.net.cn/CN/abstract/abstract18636.shtmlFang Biao, Huang Gao-Ming, Gao Jun. A multichannel blind compressed sensing framework for linear frequency modulated wideband radar signals. Acta Automatica Sinica, 2015, 41(3): 591-600 http://www.aas.net.cn/CN/abstract/abstract18636.shtml
|
[6]
|
Massa A, Rocca P, Oliveri G. Compressive sensing in electromagnetics-a review. IEEE Antennas and Propagation Magazine, 2015, 57(1): 224-238 doi: 10.1109/MAP.2015.2397092
|
[7]
|
伍政华, 王强, 刘劼, 孙明建, 沈毅. 基于边膨胀图的压缩感知理论. 自动化学报, 2014, 40(12): 2824-2835 http://www.aas.net.cn/CN/abstract/abstract18561.shtmlWu Zheng-Hua, Wang Qiang, Liu Jie, Sun Ming-Jian, Shen Yi. Compressive sensing theory based on edge expander graphs. Acta Automatica Sinica, 2014, 40(12): 2824-2835 http://www.aas.net.cn/CN/abstract/abstract18561.shtml
|
[8]
|
Yu S W, Khwaja A S, Ma J W. Compressed sensing of complex-valued data. Signal Processing, 2011, 92(7): 357-362 http://cn.bing.com/academic/profile?id=2092062581&encoded=0&v=paper_preview&mkt=zh-cn
|
[9]
|
He Z Q, Shi Z P, Huang L, So H C. Underdetermined DOA estimation for wideband signals using robust sparse covariance fitting. IEEE Signal Processing Letters, 2015, 22(4): 435-439 doi: 10.1109/LSP.2014.2358084
|
[10]
|
Ender J H G. On compressive sensing applied to radar. Signal Processing, 2010, 90(5): 1402-1414 doi: 10.1016/j.sigpro.2009.11.009
|
[11]
|
Dong X, Zhang Y H. A novel compressive sensing algorithm for SAR imaging. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(2): 708-720 doi: 10.1109/JSTARS.2013.2291578
|
[12]
|
Xu G, Xing M D, Bao Z. High-resolution inverse synthetic aperture radar imaging of manoeuvring targets with sparse aperture. Electronics Letters, 2015, 51(3): 287-289 doi: 10.1049/el.2014.3368
|
[13]
|
Yang Y, Liu F, Xu W L, Crozier S. Compressed sensing MRI via two-stage reconstruction. IEEE Transactions on biomedical engineering, 2015, 62(1): 110-118 doi: 10.1109/TBME.2014.2341621
|
[14]
|
Duarte M F, Baraniuk R G. Kronecker compressive sensing. IEEE Transactions on Image Processing, 2012, 21(2): 494-504 doi: 10.1109/TIP.2011.2165289
|
[15]
|
Gan L. Block compressed sensing of natural images. In: Proceedings of the 15th International Conference on Digital Signal Processing. Cardiff, UK: IEEE, 2007. 403-406 http://www.oalib.com/references/19339271
|
[16]
|
Cotter S F, Rao B D, Engan K, Kreutz-Delgado K. Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Transactions on Signal Processing, 2005, 53(7): 2477-2488 doi: 10.1109/TSP.2005.849172
|
[17]
|
Hao F, Vorobyov S A, Hai J, Taheri O. Permutation meets parallel compressed sensing: how to relax restricted isometry property for 2D sparse signals. IEEE Transactions on Signal Processing, 2014, 62(1): 196-210 doi: 10.1109/TSP.2013.2284762
|
[18]
|
Duarte M F, Eldar Y C. Structured compressed sensing: from theory to applications. IEEE Transactions on Signal Processing, 2011, 59(9): 4053-4085 doi: 10.1109/TSP.2011.2161982
|
[19]
|
Tropp J A. Algorithms for simultaneous sparse approximation. Part II: convex relaxation. Signal Processing, 2006, 86(3): 589-602
|
[20]
|
张贤达. 矩阵分析与应用. 第2版. 北京: 清华大学出版社, 2013. 32-35Zhang Xian-Da. Matrix Analysis and Applications (2nd edition). Beijing: Tsinghua University Press, 2013. 32-35
|
[21]
|
Erdogan A T, Kizilkale C. Fast and low complexity blind equalization via subgradient projections. IEEE Transactions on Signal Processing, 2005, 53(7): 2513-2524 doi: 10.1109/TSP.2005.849195
|
[22]
|
Bregman L M. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics, 1967, 7(3): 200-217 doi: 10.1016/0041-5553(67)90040-7
|
[23]
|
Osher S, Mao Y, Dong B, Yin W. Fast linearized Bregman iteration for compressive sensing and sparse denoising. Communications in Mathematical Sciences, 2011, 8(1): 93-111 http://cn.bing.com/academic/profile?id=2061315188&encoded=0&v=paper_preview&mkt=zh-cn
|
[24]
|
Cai J F, Osher S, Shen Z W. Linearized Bregman iterations for frame-based image deblurring. SIAM Journal on Imaging Sciences, 2009, 2(1): 226-252 doi: 10.1137/080733371
|
[25]
|
Yin W, Osher S, Goldfarb D, Darbon J. Bregman iterative algorithms for l1-minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences, 2008, 1(1): 143-168 doi: 10.1137/070703983
|
[26]
|
李少东, 杨军, 马晓岩. 基于压缩感知的ISAR高分辨成像算法. 通信学报, 2013, 34(9): 150-157 http://www.cnki.com.cn/Article/CJFDTOTAL-TXXB201309018.htmLi Shao-Dong, Yang Jun, Ma Xiao-Yan. High resolution ISAR imaging algorithm based on compressive sensing. Journal on Communications, 2013, 34(9): 150-157 http://www.cnki.com.cn/Article/CJFDTOTAL-TXXB201309018.htm
|
[27]
|
Zhang S H, Zhang W, Zong Z L, Tian Z, Yeo T S. High-resolution bistatic ISAR imaging based on two-dimensional compressed sensing. IEEE Transactions on Antennas and Propagation, 2015, 63(5): 2098-2111 doi: 10.1109/TAP.2015.2408337
|