2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Hamilton-Jacobi方程的飞行器机动动作可达集分析

刘瑛 杜光勋 全权 田云川

刘瑛, 杜光勋, 全权, 田云川. 基于Hamilton-Jacobi方程的飞行器机动动作可达集分析. 自动化学报, 2016, 42(3): 347-357. doi: 10.16383/j.aas.2016.c140888
引用本文: 刘瑛, 杜光勋, 全权, 田云川. 基于Hamilton-Jacobi方程的飞行器机动动作可达集分析. 自动化学报, 2016, 42(3): 347-357. doi: 10.16383/j.aas.2016.c140888
LIU Ying, DU Guang-Xun, QUAN Quan, TIAN Yun-Chuan. Reachability Calculation for Aircraft Maneuver Using Hamilton-Jacobi Function. ACTA AUTOMATICA SINICA, 2016, 42(3): 347-357. doi: 10.16383/j.aas.2016.c140888
Citation: LIU Ying, DU Guang-Xun, QUAN Quan, TIAN Yun-Chuan. Reachability Calculation for Aircraft Maneuver Using Hamilton-Jacobi Function. ACTA AUTOMATICA SINICA, 2016, 42(3): 347-357. doi: 10.16383/j.aas.2016.c140888

基于Hamilton-Jacobi方程的飞行器机动动作可达集分析

doi: 10.16383/j.aas.2016.c140888
基金项目: 

国家自然科学基金 61473012

详细信息
    作者简介:

    杜光勋 北京航空航天大学自动化学院博士后.2009年获得北京航空航天大学学士学位.2015年获得北京航空航天大学博士学位.主要研究方向为可靠飞行控制, 飞行安全, 可达集分析.E-mail:dgx@buaa.edu.cn

    全权 北京航空航天大学自动化学院副教授.2004年获得北京航空航天大学学士学位.2010年获得北京航空航天大学博士学位.主要研究方向为视觉导航, 可靠飞行控制.E-mail:qq_buaa@buaa.edu.cn

    田云川 95949部队飞行员.2002年获得空军航空大学学士学位.主要研究方向为飞行安全.E-mail:tianyunchuan@sohu.com

    通讯作者:

    刘瑛 北京航空航天大学自动化学院博士后.2004年获得空军工程大学学士学位.2007年获得空军工程大学硕士学位.2014年获得天津大学博士学位.主要研究方向为飞行安全, 可达集分析, 航迹控制.本文通信作者E-mail:liuying204@buaa.edu.cn

Reachability Calculation for Aircraft Maneuver Using Hamilton-Jacobi Function

Funds: 

National Natural Science Foundation of China 61473012

More Information
    Author Bio:

    Postdoctor at Beihang University. He received his bachelor and Ph.D. degrees from Beihang University in 2009 and 2015, respectively. His research interest covers reliable flight control, flight safety, and reachability analysis. E-mail:

    Associate professor at Beihang University. He received his bachelor and Ph.D. degrees from Beihang University in 2004 and 2010, respectively. His research interest covers vision-based navigation and reliable flight control.E-mail:

    Pilot at the 95949 Army of People's Liberation Army Air Force. He received his bachelor degree from Aviation University of Air Force in 2002. His main research interest is flight safety..E-mail:

    Corresponding author: LIU Ying Postdoctor at Beihang University. She received her bachelor and master degrees from Air Force Engineering University in 2004 and 2007, respectively. She received her Ph.D. degree in Tianjin University in 2014. Her research interest covers flight safety, reachability analysis, and trajectory control. Corresponding author of this paper.E-mail:liuying204@buaa.edu.cn
  • 摘要: 为了给驾驶员完成标准机动动作提供决策支持, 提出一种使用哈密尔顿-雅克比(Hamilton-Jacobi)方程求解机动动作可行状态空间的研究方法.使用关键点将机动动作划分为不同阶段, 将各关键点的标准状态约束作为目标集, 逆时间求解目标集对应的可达集得到各阶段的边界状态范围, 目标集和可达集均由零水平集表示.使用该方法得到斤斗动作三维度运动模型下各阶段的可达集及斤斗动作的可行状态空间, 为了使运动模型的控制量与驾驶员实际操纵更为接近, 构建了以迎角变化率为控制量的四维度运动模型, 在此基础上对斤斗动作各阶段的可达集进行了分析.
  • 图  1  目标集与可达集的关系

    Fig.  1  The relationship between target set and reachable set of the stages

    图  2  斤斗动作阶段划分

    Fig.  2  The stages division of the loop maneuver

    图  3  三维度可达集顶视图及前视图

    Fig.  3  The three dimensions reachable set of each stage and the corresponded top view and front view

    图  4  斤斗动作各阶段的安全状态空间

    Fig.  4  The safe state space of the loop maneuver

    图  5  第一阶段四维度可达集

    Fig.  5  The reachable set of the first stage under the condition of four dimension motion equation

    图  6  第二阶段四维度可达集

    Fig.  6  The reachable set of the second stage under the condition of four dimension motion equation

    图  7  第三阶段四维度可达集

    Fig.  7  The reachable set of the third stage under the condition of four dimension motion equation

    表  1  关键点状态约束条件

    Table  1  quad The range of state variables at the key points

    Key points Three dimensional dynamical model Four dimensional dynamical model
    1 $ 213 {\rm {m/s}}\leq V\leq 231 m/s$
    $ 30^{\circ}\leq\gamma\leq40^{\circ}$
    $ 2 450 {\rm m}\leq h\leq2 550 {\rm m}$
    $ 213 {\rm {m/s}}\leq V\leq 231 $ m/s
    $ 30^{\circ}\leq\gamma\leq 40^{\circ}$
    $ 2 450 {\rm m}\leq h\leq 2 550 $ m
    $ 6^{\circ}\leq\alpha\leq 10^{\circ}$
    2 $ 213 {\rm {m/s}}\leq V\leq231$ m/s
    $ 110^{\circ}\leq\gamma\leq120^{\circ}$
    $ 3 500 {\rm m}\leq h\leq3 700 $ m
    $ 213 {\rm {m/s}}\leq V\leq231 $ m/s
    $ 110^{\circ}\leq\gamma\leq120^{\circ}$
    $ 3 500 {\rm m}\leq h\leq3 700 $ m
    $ 10^{\circ}\leq\alpha\leq13^{\circ}$
    3 $ 110 {\rm {m/s}}\leq V\leq130$ m/s
    $ 170^{\circ}\leq\gamma\leq180^{\circ}$
    $ 3 900 {\rm m}\leq h\leq4 000 {\rm m}$
    $ 110 {\rm {m/s}}\leq V\leq130$ m/s
    $ 170^{\circ}\leq\gamma\leq180^{\circ}$
    $ 3 900 {\rm m}\leq h\leq4 000$ m
    $ 8^{\circ}\leq\alpha\leq11^{\circ}$
    下载: 导出CSV

    表  2  斤斗动作飞行包线及控制量的取值范围

    Table  2  Aerodynamic envelope and the range of control variables

    Aerodynamic envelope Control
    Three dimensional dynamical model $ 90 {\rm {m/s}}\leq V\leq240$ m/s
    $ 0^{\circ}\leq\gamma\leq180^{\circ}$
    $ 1 800 {\rm m}\leq h\leq4 200$ m
    $-2^{\circ}\leq\alpha\leq21^{\circ}$
    Four dimensional dynamical model $ 90 {\rm {m/s}}\leq V\leq240$ m/s
    $ 0^{\circ}\leq\gamma\leq180^{\circ}$
    $ 1 800 {\rm m}\leq h\leq4 200$ m
    $ -2^{\circ}\leq\alpha\leq21^{\circ}$
    $ -0. 35\leq c\leq0. 35$
    下载: 导出CSV

    表  3  状态空间网格划分

    Table  3  Grid division of the state space

    Parameters Speed Flight path angle Height AOA
    Range $ 90 {\rm {m/s}}\leq V\leq240$ m/s $ 0^{\circ}\leq\gamma\leq180^{\circ}$ $ 1 800 {\rm m}\leq h\leq4 200$ m $ -2^{\circ}\leq\alpha\leq21^{\circ}$
    Grid number 250 180 500 24
    Step size 1 1 4.8 1
    下载: 导出CSV

    表  4  可达集对应的状态参数范围

    Table  4  The range of state variables corresponding with the reachable set

    Stage Range of the state parameters
    1 $ 213 {\rm {m/s}}\leq V\leq236$ m/s
    $ 25^{\circ}\leq\gamma\leq40^{\circ}$
    $ 2 440 {\rm m}\leq h\leq2 550 $ m
    2 $ 150 {\rm {m/s}}\leq V\leq235$ m/s
    $ 90^{\circ}\leq\gamma\leq120^{\circ}$
    $ 3 410 {\rm m}\leq h\leq3 700$ m
    3 $ 110 {\rm {m/s}}\leq V\leq130$ m/s
    $ 170^{\circ}\leq\gamma\leq180^{\circ}$
    $ 3 900 {\rm m}\leq h\leq4 000$ m
    下载: 导出CSV
  • [1] 徐邦年.飞行安全评估概论.北京:蓝天出版社, 2005. 1-4

    Xu Bang-Nian. Flight Security Evaluation Generality. Beijing:Blue Sky Press, 2005. 1-4
    [2] Bekiaris-Liberis N, Bayen A M. Nonlinear stabilization of a viscous Hamilton-Jacobi PDE. In:Proceedings of the 2014 IEEE 53rd Annual Conference on Decision and Control (CDC). Los Angeles, CA:IEEE, 2014. 2858-2863
    [3] Weekly K, Tinka A, Anderson L, Bayen A M. Autonomous river navigation using the Hamilton-Jacobi framework for underactuated vehicles. IEEE Transactions on Robotics, 2014, 30(5):1250-1255 doi: 10.1109/TRO.2014.2327288
    [4] Gillula J H, Hoffmann G M, Huang H M, Vitus M P, Tomlin C J. Applications of hybrid reachability analysis to robotic aerial vehicles. The International Journal of Robotics Research, 2011, 30(3):335-354 doi: 10.1177/0278364910387173
    [5] Bayen A M, Mitchell I M, Osihi M K, Tomlin C J. Aircraft autolander safety analysis through optimal control-based reach set computation. Journal of Guidance, Control, and Dynamics, 2007, 30(1):68-77 doi: 10.2514/1.21562
    [6] Van Oort E R, Chu Q P, Mulder J A. Maneuver envelope determination through reachability analysis. Advances in Aerospace Guidance, Navigation and Control. Berlin Heidelberg:Springer, 2011. 91-102
    [7] Glizer V T, Turetsky V. Increasing pursuer capturability by using hybrid dynamics. International Journal of Applied Mathematics and Computer Science, 2015, 25(1):77-92
    [8] Lin Y C, Saripalli S. Collision avoidance for UAVs using reachable sets. In:Proceedings of the 2015 International Conference on Unmanned Aircraft Systems (ICUAS). Denver, CO:IEEE, 2015. 226-235
    [9] Alam A, Gattami A, Johansson K H, Tomlin C J. Guaranteeing safety for heavy duty vehicle platooning:safe set computations and experimental evaluations. Control Engineering Practice, 2014, 24:33-41 doi: 10.1016/j.conengprac.2013.11.003
    [10] Ding J, Sprinkle J, Tomlin C J, Sastry S S, Paunicka J L. Reachability calculations for vehicle safety during manned/unmanned vehicle interaction. Journal of Guidance, Control, and Dynamics, 2012, 35(1):138-152 doi: 10.2514/1.53706
    [11] Datar M, Ketkar V, Mejari M, Gupta A, Singh N, Kazi F. Motion planning for the three wheel mobile robot using the reachable set computation under constraints. In:Proceedings of the 3rd International Conference on Advances in Control and Optimization of Dynamical Systems. Kanpur, India:IFAC, 2014. 787-793
    [12] 张军英, 许进, 保铮.遗传交叉运算的可达性研究.自动化学报, 2002, 28(1):120-125 http://www.aas.net.cn/CN/abstract/abstract15509.shtml

    Zhang Jun-Ying, Xu Jin, Bao Zheng. Attainability of genetic crossover operator. Acta Automatica Sinica, 2002, 28(1):120-125 http://www.aas.net.cn/CN/abstract/abstract15509.shtml
    [13] Wu M, Yan G F, Lin Z Y. Reachability of affine systems on polytopes. Acta Automatica Sinica, 2009, 35(12):1528-1533 doi: 10.1016/S1874-1029(08)60121-4
    [14] Tomlin C J, Lygeros J, Sastry S S. A game theoretic approach to controller design for hybrid systems. Proceedings of the IEEE, 2000, 88(7):949-970 doi: 10.1109/5.871303
    [15] Mitchell I M. A toolbox of level set methods, Tech. Rep. TR-2004-09, Department of Computer Science, University of British Columbia, Vancouver, BC, Canada, 2004.
    [16] 贾鹤鸣, 张利军, 程相勤, 边信黔, 严浙平, 周佳加.基于非线性迭代滑模的欠驱动UUV三维航迹跟踪控制.自动化学报, 2012, 38(2):308-314 doi: 10.3724/SP.J.1004.2012.00308

    Jia He-Ming, Zhang Li-Jun, Cheng Xiang-Qin, Bian Xin-Qian, Yan Zhe-Ping, Zhou Jia-Jia. Three-dimensional path following control for an underactuated UUV based on nonlinear iterative sliding mode. Acta Automatica Sinica, 2012, 38(2):308-314 doi: 10.3724/SP.J.1004.2012.00308
    [17] Osher S, Fedkiw R. Level Set Methods and Dynamic Implicit Surfaces. New York:Springer, 2003. 25-37
    [18] 李治平.偏微分方程数值解讲义.北京:北京大学出版社, 2010. 94-97

    Li Zhi-Ping. Numerical Solution of Partial Differential Equation. Beijing:Peking University Press, 2010. 94-97
    [19] 刘瑛, 李敏强, 张瑞峰.复杂机动动作最优航迹控制模型及操纵特性分析.控制理论与应用, 2014, 31(5):566-576 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201405003.htm

    Liu Ying, Li Min-Qiang, Zhang Rui-Feng. The optimal trajectory control model of the aircraft maneuver and its operation characteristics. Control Theory & Applications, 2014, 31(5):566-576 http://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201405003.htm
    [20] 刘瑛, 李敏强, 陈富赞.飞行器机动动作风险定量评估模型.系统工程与电子技术, 2014, 36(3):469-475 http://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201403012.htm

    Liu Ying, Li Min-Qiang, Chen Fu-Zan. Risk quantitative evaluation model of the aircraft maneuver. Systems Engineering and Electronics, 2014, 36(3):469-475 http://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201403012.htm
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  2870
  • HTML全文浏览量:  235
  • PDF下载量:  768
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-29
  • 录用日期:  2016-01-04
  • 刊出日期:  2016-03-01

目录

    /

    返回文章
    返回