-
摘要: 针对现有去雾后图像质量评价算法少、针对性弱和有效性差等问题, 本文提出一种基于分类学习的去雾后图像质量评价算法.该算法通过分析去雾后图像本身所蕴含的质量特征, 提取出基于图像增强、图像复原、统计先验以及人类视觉系统 (Human visual system, HVS) 的度量指标; 并在本文数据库基础上, 利用支持向量机 (Support vector machine, SVM) 将质量评价问题转换为分类问题.实验结果表明, 该算法与已有评价方法相比, 在获得高效分类评价结果的同时, 具有较好的实用性和主观一致性.Abstract: Since existing quality assessment methods suffer from poor pertinence and low efficiency, a novel quality assessment method based on classified learning for dehazed images is proposed. In this paper, firstly the metrics interms of image enhancement, image restoration, statistical prior, and human visual system are extracted by analyzing qualitative characteristics of images after haze removal. Then the quality assessment problem is converted to the classification problem by means of support vector machine using our database. Experimental results demonstrate that compared with other state-of-the-art methods the proposed method is highly efficient and practical with subjective and objective consistency.
-
表 1 标签矩阵 $L(j)$ 与 $x_j$ 、 $y_j$ 的映射关系
Table 1 The mapping relationships between $L(j)$ and $x_j$ , $y_j$
$x_j:y_j$ ① ② ③ ① -- +1 +1 ② -1 -- +1 ③ -1 -1 -- 表 2 纵向实验结果
Table 2 The results of vertical experiment
类别 正确率 (%) $T_1$ 70.7333 $T_2$ 65.5667 $T_3$ 73.8000 $T_4$ 67.7667 $T_5$ 62.9333 $T_6$ 68.9667 $T_7$ 72.2000 本文 97.3030 表 3 横向实验结果
Table 3 The results of horizontal experiment
-
[1] He K M, Sun J, Tang X O. Single image haze removal using dark channel prior. In:Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA:IEEE, 2009. 1956-1963 [2] 刘海波, 杨杰, 吴正平, 张庆年, 邓勇.基于暗通道先验和Retinex理论的快速单幅图像去雾方法.自动化学报, 2015, 41(7):1264-1273 http://www.aas.net.cn/CN/abstract/abstract18700.shtmlLiu Hai-Bo, Yang Jie, Wu Zheng-Pin, Zhang Qing-Nian, Deng Yong. A fast single image dehazing method based on dark channel prior and Retinex theory. Acta Automatica Sinica, 2015, 41(7):1264-1273 http://www.aas.net.cn/CN/abstract/abstract18700.shtml [3] 吴迪, 朱青松.图像去雾的最新研究进展.自动化学报, 2015, 42(2):221-239 http://www.aas.net.cn/CN/abstract/abstract18603.shtmlWu Di, Zhu Qing-Song. The latest research progress of image dehazing. Acta Automatica Sinica, 2015, 42(2):221-239 http://www.aas.net.cn/CN/abstract/abstract18603.shtml [4] 南栋, 毕笃彦, 查宇飞, 张泽, 李权合.基于参数估计的无参考型图像质量评价算法.电子与信息学报, 2013, 35(9):2066-2072 http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201309006.htmNan Dong, Bi Du-Yan, Zha Yu-Fei, Zhang Ze, Li Quan-He. A no-reference image quality assessment method based on parameter estimation. Journal of Electronics and Information Technology, 2013, 35(9):2066-2072 http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201309006.htm [5] Tan R T. Visibility in bad weather from a single image. In:Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA:IEEE, 2008. 1-8 [6] Fattal R. Single image dehazing. ACM Transactions on Graphics, 2008, 27(3), doi: 10.1145/1360612.1360671 [7] Kopf J, Neubert B, Chen B, Cohen M, Cohen-Or D, Deussen O, Uyttendaele M, Lischinski D. Deep photo:model-based photograph enhancement and viewing. ACM Transactions on Graphics, 2008, 27(5), doi: 10.1145/1409060.1409069 [8] Tarel J P, Hautiére N. Fast visibility restoration from a single color or gray level image. In:Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan:IEEE, 2009. 2201-2208 [9] Hautiére N, Tarel J P, Aubert D, Dumont É. Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Analysis and Stereology Journal, 2008, 27(2):87-95 doi: 10.5566/ias.v27.p87-95 [10] 郭璠, 蔡自兴.图像去雾算法清晰化效果客观评价方法.自动化学报, 2012, 38(9):1410-1419 doi: 10.3724/SP.J.1004.2012.01410Guo Fan, Cai Zi-Xing. Objective assessment method for the clearness effect of image defogging algorithm. Acta Automatica Sinica, 2012, 38(9):1410-1419 doi: 10.3724/SP.J.1004.2012.01410 [11] 李大鹏, 禹晶, 肖创柏.图像去雾的无参考客观质量评测方法.中国图象图形学报, 2011, 16(9):1753-1757 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201109030.htmLi Da-Peng, Yu Jing, Xiao Chuang-Bai. No-reference quality assessment method for defogged images. Journal of Image and Graphics, 2011, 16(9):1753-1757 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201109030.htm [12] Wang Y K, Fan C T. Single image defogging by multiscale depth fusion. IEEE Transactions on Image Processing, 2014, 23(11):4826-4837 doi: 10.1109/TIP.2014.2358076 [13] Moorthy A K, Bovik A C. Blind image quality assessment:from natural scene statistics to perceptual quality. IEEE Transactions on Image Processing, 2011, 20(12):3350-3364 doi: 10.1109/TIP.2011.2147325 [14] Gao Y Y, Hu H M, Wang S H, Li B. A fast image dehazing algorithm based on negative correction. Signal Processing, 2014, 130:380-398 [15] Nan D, Bi D Y, Liu C, Ma S P, He L Y. A Bayesian framework for single image dehazing considering noise. The Scientific World Journal, 2014, 2014:651986 [16] Liu X H, Tanaka M, Okutomi M. Noise level estimation using weak textured patches of a single noisy image. In:Proceedings of the 19th IEEE International Conference on Image Processing. Orlando, Florida, USA:IEEE, 2012. 665-668 [17] 邵宇, 孙富春, 刘莹.基于局部结构张量的无参考型图像质量评价方法.电子与信息学报, 2012, 34(8):1779-1785 http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201208000.htmShao Yu, Sun Fu-Chun, Liu Ying. A no-reference image quality assessment method using local structure tensor. Journal of Electronics and Information Technology, 2012, 34(8):1779-1785 http://www.cnki.com.cn/Article/CJFDTOTAL-DZYX201208000.htm [18] Mannos J L, Sakrison D J. The effects of a visual fidelity criterion of the encoding of images. IEEE Transactions on Information Theory, 1974, 20(4):525-536 doi: 10.1109/TIT.1974.1055250 [19] Tang K T, Yang J C, Wang J. Investigating haze-relevant features in a learning framework for image dehazing. In:Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA:IEEE, 2014. 2995-3002 [20] 张凯军, 梁循.一种改进的显性多核支持向量机.自动化学报, 2014, 40(10):2288-2294 http://www.aas.net.cn/CN/abstract/abstract18503.shtmlZhang Kai-Jun, Liang Xun. An improved domain multiple kernel support vector machine. Acta Automatica Sinica, 2014, 40(10):2288-2294 http://www.aas.net.cn/CN/abstract/abstract18503.shtml [21] Chang C C, Lin C J. LIBSVM:a library for support vector machines[Online], available:http://www.csie.ntu.tw/cjlin/libsvm, 2007, January 1 [22] Saad M A, Bovik A C, Charrier C. Blind image quality assessment:a natural scene statistics approach in the DCT domain. IEEE Transactions on Image Processing, 2012, 21(8):3339-3352 doi: 10.1109/TIP.2012.2191563