[1]
|
Benson D A. A Gauss Pseudospectral Transcription for Optimal Control [Ph.D. dissertation], Massachusetts Institute of Technology, USA, 2004
|
[2]
|
[2] Benson D A, Huntington G T, Thorvaldsen T P, Rao A V. Direct trajectory optimization and costate estimation via an orthogonal collocation method. Journal of Guidance, Control, and Dynamics, 2006, 29(6): 1435-1440
|
[3]
|
[3] Huntington G T. Advancement and Analysis of a Gauss Pseudospectral Transcription for Optimal Control Problems [Ph.D. dissertation], Massachusetts Institute of Technology, USA, 2007
|
[4]
|
[4] Garg D, Patterson M A, Francolin C, Darby C L, Huntington G T, Hager W W, Rao A V. Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method. Computational Optimization and Applications, 2011, 49(2): 335-358
|
[5]
|
[5] Garg D, Hager W W, Rao A V. Pseudospectral methods for solving infinite-horizon optimal control problems. Automatica, 2011, 47(4): 829-837
|
[6]
|
[6] Garg D. Advances in Global Pseudospectral Methods for Optimal Control [Ph.D. dissertation], Massachusetts Institute of Technology, USA, 2011
|
[7]
|
[7] Elnagar G, Kazemi M A, Rzaazghi M. The pseudospectral Legendre method for discretizing optimal control problems. IEEE Transactions on Automatic Control, 1995, 40(10): 1793-1796
|
[8]
|
[8] Elnagar G N, Rzaazghi M. A collocation-type method for linear quadratic optimal control problems. Optimal Control Applications and Methods, 1997, 18(3): 227-235
|
[9]
|
[9] Fahroo F, Ross I M. Costate estimation by a Legendre pseudospectral method. Journal of Guidance, Control, and Dynamics, 2001, 24(2): 270-277
|
[10]
|
Elnagar G N, Kazemi M A. Pseudospectral Chebyshev optimal control of constrained nonlinear dynamical systems. Computational Optimization and Applications, 1998, 11(2): 195-217
|
[11]
|
Fahroo F, Ross I M. Direct trajectory optimization by a Chebyshev pseudospectral method. Journal of Guidance, Control, and Dynamics, 2002, 25(1): 160-166
|
[12]
|
Gong Q, Ross I M, Fahroo F. Costate computation by a Chebyshev pseudospectral method. Journal of Guidance, Control, and Dynamics, 2010, 33(2): 623-628
|
[13]
|
Fornberg B. A Practical Guide to Pseudospectral Methods. New York: Cambridge University Press, 1998
|
[14]
|
Weideman J A C, Trefethen L N. The kink phenomenon in Fejr and Clenshaw-Curtis quadrature. Numerische Mathematik, 2007, 107(4): 707-727
|
[15]
|
Berrut J P, Trefethen L N. Barycentric Lagrange interpolation. SIAM Review, 2004, 46(3): 501-517
|
[16]
|
Gill P E, Murray W, Saunders M A. SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Review, 2005, 47(1): 99-131
|
[17]
|
Biegler L T, Zavala V M. Large-scale nonlinear programming using IPOPT: an integrating framework for enterprise-wide dynamic optimization. Computers and Chemical Engineering, 2009, 33(3): 575-582
|
[18]
|
Waldvogel J. Fast construction of the Fejr and Clenshaw-Curtis quadrature rules. BIT Numerical Mathematics, 2006, 46(1): 195-202
|
[19]
|
Costa B, Don W S. On the computation of high order pseudospectral derivatives. Applied Numerical Mathematics, 2000, 33(1-4): 151-159
|
[20]
|
Gong Q, Kang W, Ross I M. A pseudospectral method for the optimal control of constrained feedback linearizable systems. IEEE Transactions on Automatic Control, 2006, 51(7): 1115-1129
|
[21]
|
Betts J T. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming (Second edition). Philadelphia: Society for Industrial and Applied Mathematics, 2010
|