2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

联合机会约束问题的鲁棒近似模型

丁然 李国祥 李歧强

丁然, 李国祥, 李歧强. 联合机会约束问题的鲁棒近似模型. 自动化学报, 2015, 41(10): 1772-1777. doi: 10.16383/j.aas.2015.e130268
引用本文: 丁然, 李国祥, 李歧强. 联合机会约束问题的鲁棒近似模型. 自动化学报, 2015, 41(10): 1772-1777. doi: 10.16383/j.aas.2015.e130268
DING Ran, LI Guo-Xiang, LI Qi-Qiang. Robust Approximations to Joint Chance-constrained Problems. ACTA AUTOMATICA SINICA, 2015, 41(10): 1772-1777. doi: 10.16383/j.aas.2015.e130268
Citation: DING Ran, LI Guo-Xiang, LI Qi-Qiang. Robust Approximations to Joint Chance-constrained Problems. ACTA AUTOMATICA SINICA, 2015, 41(10): 1772-1777. doi: 10.16383/j.aas.2015.e130268

联合机会约束问题的鲁棒近似模型

doi: 10.16383/j.aas.2015.e130268
基金项目: 

Supported by Shandong Provincial Natural Science Foundation, China (ZR2014FM036)

Robust Approximations to Joint Chance-constrained Problems

Funds: 

Supported by Shandong Provincial Natural Science Foundation, China (ZR2014FM036)

  • 摘要: 针对联合机会约束优化问题提出了两种新的近似模型. 回顾了CVaR (conditional-value-at-risk 条件风险价值) 、机会约束和鲁棒优化之间的关系之后, 提出了两种新的E((.)+) 的上界, 其中E表示期望, x+ = max(0,x) , 然后以此为基础推出了两种针对独立机会约束问题的近似模型, 并证明了这两种近似模型就是对应相应不确定集合的鲁棒优化模型, 然后推出了针对联合机会约束问题的近似模型. 最后举例对所提出的独立机会约束和联合机会约束的鲁棒近似模型的解进行了对比, 结果说明了所提出方法的有效性.
  • [1] Charnes A, Cooper W W, Symonds G H. Cost horizons and certainty equivalents: an approach to stochastic programming of heating oil. Management Science, 1958 4(3): 69-83
    [2] [2] Calasfoire G, Ghaoui L E. On distributionally robust chance-constrained linear programs. Journal of Optimization Theory and Applications, 2006, 130(1): 1-22
    [3] [3] Prekopa A. Stochastic Programming. Dordrecht: Kluwer, 1995
    [4] [4] Soyster A L. Convex programming with set-inclusive constraints and applications to inexact linear programming. Operations Research, 1973, 21(5): 1154-1157
    [5] [5] Ben-Tal A, Nemirovski A. Robust convex optimization. Operations Research, 1998, 23(4): 769-805
    [6] [6] Ben-Tal A, Nemirovski A. Robust solutions to uncertain programs. Operations Research Letters, 1999, 25(1): 1-13
    [7] [7] Bertsimas D, Sim M. The price of robustness. Operations Research, 2004, 52(1): 35-53
    [8] [8] Bertsimas D, Pachamanova D, Sim M. Robust linear optimization under general norms. Operations Research Letters, 2004, 32(6): 510-516
    [9] [9] Li Z K, Ding R, Floudas C A. A comparative theoretical and computational study on robust counterpart optimization: I. Robust linear optimization and robust mixed integer linear optimization. Industrial and Chemistry Research, 2011, 50(18): 10567-10603
    [10] Li Z K, Tang Q H, Floudas C A. A comparative theoretical and computational study on robust counterpart optimization: II. Probabilistic guarantees on constraint satisfaction. Industrial and Chemistry Research, 2012, 51(19): 6769-6788
    [11] Ben-Tal A, Teboulle M. Expected utility, penalty functions and duality in stochastic nonlinear programming. Management Science, 1986, 32(11): 1445-1466
    [12] Chen W Q, Sim M. Goal driven optimization. Operations Research, 2009, 57(2): 342-357
    [13] Chen W Q, Sim M, Sun J, Teo C P. From CVaR to uncertainty set: implications in joint chance constrained optimization. Operations Research, 2010, 58(2): 470-485
    [14] Ang T M M, Lim Y F, Sim M. Robust storage assignment in unit-load warehouses. Operations Research, 2012, 58(1): 2114-2130
    [15] Gounaris C E, Wiesemann W, Floudas C A. The robust capacitated vehicle routing problem under demand uncertainty. Operations Research, 2013, 61(3): 677-693
  • 加载中
计量
  • 文章访问数:  1559
  • HTML全文浏览量:  97
  • PDF下载量:  913
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-10
  • 修回日期:  2014-12-31
  • 刊出日期:  2015-10-20

目录

    /

    返回文章
    返回