2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变分贝叶斯逼近的前向仿射变换点集匹配方法研究

曲寒冰 陈曦 王松涛 于明

曲寒冰, 陈曦, 王松涛, 于明. 基于变分贝叶斯逼近的前向仿射变换点集匹配方法研究. 自动化学报, 2015, 41(8): 1482-1494. doi: 10.16383/j.aas.2015.e130204
引用本文: 曲寒冰, 陈曦, 王松涛, 于明. 基于变分贝叶斯逼近的前向仿射变换点集匹配方法研究. 自动化学报, 2015, 41(8): 1482-1494. doi: 10.16383/j.aas.2015.e130204
QU Han-Bing, CHEN Xi, WANG Song-Tao, YU Ming. Forward Affine Point Set Matching Under Variational Bayesian Framework. ACTA AUTOMATICA SINICA, 2015, 41(8): 1482-1494. doi: 10.16383/j.aas.2015.e130204
Citation: QU Han-Bing, CHEN Xi, WANG Song-Tao, YU Ming. Forward Affine Point Set Matching Under Variational Bayesian Framework. ACTA AUTOMATICA SINICA, 2015, 41(8): 1482-1494. doi: 10.16383/j.aas.2015.e130204

基于变分贝叶斯逼近的前向仿射变换点集匹配方法研究

doi: 10.16383/j.aas.2015.e130204

Forward Affine Point Set Matching Under Variational Bayesian Framework

Funds: 

Supported by Innovation Group Plan of Beijing Academy of Science and Technology (IG201506N), Youth Core Plan of Beijing Academy of Science and Technology (2014-30), Tianjin Science and Technology Projects (14RCGFGX00846)

More Information
    Corresponding author: QU Han-Bing Received the M.S.and Ph.D.degrees from Harbin Institute of Technology (HIT) and Institute of Automation,Chinese Academy of Sciences (CASIA) in 2003 and 2007,respectively.Currently,He is an associate professor in Beijing Institute of New Technology Applications and is the director of Key Laboratory of Pattern Recognition,Beijing Academy of Science and Technology (BJAST).He is also a committee member of Intelligent Automation Committee of Chinese Association of Automation (IACAA).His research interest covers biometrics,machine learning,pattern recognition and computer vision.Corresponding author of this paper.E-mail:quhanbing@gmail.com
  • 摘要: 本文建立了两个点集线性匹配过程的贝叶斯模型框架,并利用变分贝叶斯逼近方法对模型点集到场景点集的仿射参数进行估计。该模型利用一个有向图对映射参数、隐藏变量、模型与场景点集的关系进行了描述,并基于有向图给出了各个参数和变量后验概率的迭代估计算法。而且该模型还利用了一个带有各向异性协方差矩阵的高斯模型对场景点集的离群点进行了估计和推理。实验结果表明该模型在鲁棒性和匹配精度方面均获得了良好的效果。
  • [1] Caetano T S, Caelli T, Schuurmans D, Barone D A C. Graphical models and point pattern matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(10): 1646-1663
    [2] [2] Cootes T F, Taylor C J, Cooper D H, Graham J. Active shape models---their training and applications. Computer Vision and Image Understanding, 1995, 61(1): 38-59
    [3] [3] Chen T Z, Li Y. A high performance edge point feature match method of SAR images. Acta Automatica Sinica, 2014, 39(12): 2051-2063
    [4] [4] Gu L, Kanade T. A generative shape regularization model for robust face alignment. In: Proceedings of the 10th European Conference on Computer Vision. Marseille, France: Springer, 2008. 413-426
    [5] [5] Pilet J, Lepetit V, Fua P. Real-time nonrigid surface detection. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 822-828
    [6] [6] Pizarro D, Bartoli A. Feature-based deformable surface detection with self-occlusion reasoning. International Journal of Computer Vision, 2012, 97(1): 54-70
    [7] [7] Zhao J, Ma J Y, Tian J W, Ma J, Zhang D Z. A robust method for vector field learning with application to mismatch removing. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI: IEEE, 2011. 2977-2984
    [8] [8] Simpson I J A, Schnabel J A, Groves A R, Andersson J L R, Woolrich M W. Probabilistic inference of regularisation in non-rigid registration. NeuroImage, 2012, 59(3): 2438-2451
    [9] [9] Tsin T, Kanade T. A correlation-based approach to robust point set registration. In: Proceedings of the 8th European Conference on Computer Vision. Prague, Czech: Springer, 2004. 558-569
    [10] Chui H, Rangarajan A. A new point matching algorithm for non-rigid registration. Computer Vision and Image Understanding, 2003, 89(2-3): 114-141
    [11] Zhang Z Y. Iterative point matching for registration of free-form curves and surfaces. International Journal of Computer Vision, 1994, 13(2): 119-152
    [12] Jian B, Vemuri C C. Robust point set registration using Gaussian mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1633-1645
    [13] Chui H, Rangarajan A. A feature registration framework using mixture models. In: Proceedings of the 2000 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. Hilton Head Island, USA: IEEE, 2000. 190-197
    [14] Myronenko A, Song X B. Point set registration: coherent point drift. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(12): 2262-2275
    [15] Horaud R P, Forbes F, Yguel M, Dewaele G D, Zhang J. Rigid and articulated point registration with expectation conditional maximization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 587-602
    [16] Ma J Y, Zhao J, Tian J W, Tu Z W, Yuille A. Robust estimation of nonrigid transformation for point set registration. In: Proceedings of the 2003 IEEE Conference on Computer Vision and Pattern Recognition. Portland, OR: IEEE, 2013. 2147-2154
    [17] Zhou Zhi-Yong, Li Li-Hua, Zheng Jian, Kuai Dou-Jie, Hu Su, Zhang Tao. Point sets non-rigid registration using student's-t mixture model with spatial constraints. Acta Automatica Sinica, 2014, 40(4): 683-696 (in Chinese)
    [18] Rangarajan A, Coughlan J, Yuille A L. A Bayesian network framework for relational shape matching. In: Proceedings of the 9th IEEE International Conference on Computer Vision. Nice, France: IEEE, 2003. 671-678
    [19] Zhou Y, Zhang W, Tang X O, Shum H. A Bayesian mixture model for multi-view face alignment. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE, 2005. 741-746
    [20] Green P J, Mardia K V. Bayesian alignment using hierarchical models, with applications in protein bioinformatics. Biometrika, 2006, 93(2): 235-254
    [21] Czogiel I, Dryden I L, Brignell C J. Bayesian matching of unlabeled marked point sets using random fields, with application to molecular alignment. The Annals of Applied Statistics, 2011, 5(4): 2603-2629
    [22] Bishop C M. Pattern Recognition and Machine Learning. New York: Springer, 2006
    [23] Klami A. Variational Bayesian matching. In: Proceedings of the 4th Asian Conference on Machine Learning. Singapore, 2012. 205-220
    [24] Govindu V M, Werman M. On using priors in affine matching. Image and Vision Computing, 2004, 22(14): 1157-1164
    [25] MacKay D J C. Bayesian non-linear modeling for the energy prediction competition. ASHRAE Transactions, 1994, 100: 1053-1062
    [26] Neal R M. Bayesian Learning for Neural Networks. New York: Spring, 1996
    [27] Beal M, Ghahramani Z. Variational Bayesian learning of directed graphical models with hidden variables. Bayesian Analysis, 2006, 1(4): 793-832
    [28] Beal M J. Variational Algorithms for Approximate Bayesian Inference [Ph.D. dissertation], University of Cambridge, Cambridge, UK, 2003.
    [29] Lu C P, Mjolsness E. Two-dimensional object localization by coarse-to-fine correlation matching. In: Proceedings of the 1994 Advances in Neural Information Processing Systems 6. San Francisco, CA: Morgan Kaufmann, 1994. 985-992
    [30] Fraley C, Raftery A E. How many clusters? Which clustering method? Answers via model-based cluster analysis. The Computer Journal, 1998, 41(8): 578-588
    [31] Myronenko A, Song X B, Carreira-Perpin M . Non-rigid point set registration: coherent point drift. In: Proceedings of the 2006 Advances in Neural Information Processing Systems 19. Vancouver, British Columbia, Canada, 2006. 1009-1016
  • 加载中
计量
  • 文章访问数:  1569
  • HTML全文浏览量:  117
  • PDF下载量:  1787
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-30
  • 修回日期:  2015-02-09
  • 刊出日期:  2015-08-20

目录

    /

    返回文章
    返回