[1]
|
Gordon N J, Salmond D J, Smith A F N. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings F Radar and Signal Processing, 1993, 140(2): 107-113
|
[2]
|
[2] Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing, 2000, 10(3): 197-208
|
[3]
|
[3] Doucet A, de Freitas J, Gordon N. Sequential Monte Carlo Methods in Practice. New York: Springer, 2001.
|
[4]
|
[4] Arulampalam M S, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188
|
[5]
|
[5] Djuric P M, Kotecha J H, Zhang J Q, Huang Y F, Ghirmai T, Bugallo M F, Miguez J. Particle filtering. IEEE Signal Processing Magazine, 2003, 20(5): 19-38
|
[6]
|
[6] Ristic B, Arulampalam S, Gordon N. Beyond the Kalman Filter: Particle Filters for Tracking Applications. Boston, Ma., London: Artech House, 2004.
|
[7]
|
[7] Cappe O, Godsill S J, Moulines E. An overview of existing methods and recent advances in sequential Monte Carlo. Proceedings of the IEEE, 2007, 95(5): 899-924
|
[8]
|
[8] Doucet A, Johansen A M. A tutorial on particle filtering and smoothing: fifteen years later. Handbook of Nonlinear Filtering. Oxford: Oxford University Press, 2009.
|
[9]
|
[9] Gustafsson F. Particle filter theory and practice with positioning applications. IEEE Aerospace and Electronic Systems Magazine, 2010, 25(7): 53-81
|
[10]
|
Li T C, Sun S D, Sattar T P, Corchado J M. Fight sample degeneracy and impoverishment in particle filters: a review of intelligent approaches. Expert Systems With Applications, 2014, 41(8): 3944-3954
|
[11]
|
Pulford G W. Taxonomy of multiple target tracking methods. IEE Proceedings Radar, Sonar and Navigation, 2005, 152(5): 291-304
|
[12]
|
Dunik J, Straka O, Simandl M, Blasch E. Random-point-based filters: analysis and comparison in target tracking. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1403-1421
|
[13]
|
Isard M, MacCormick J. BraMBLe: a Bayesian multiple-blob tracker. In: Proceedings of the 8th International Conference on Computer Vision. Vancouver, BC: IEEE, 2001. 34-41
|
[14]
|
Orton M, Fitzgerald W. A Bayesian approach to tracking multiple targets using sensor arrays and particle filters. IEEE Transactions on Signal Processing, 2002, 50(2): 216-223
|
[15]
|
Avitzour D. Stochastic simulation Bayesian approach to multitarget tracking. IEE Proceedings-Radar, Sonar and Navigation, 1995, 142(2): 41-44
|
[16]
|
Gordon N J. A hybrid bootstrap filter for target tracking in clutter. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(1): 353-358
|
[17]
|
Stano P, Lendek Z, Braaksma J, Babuska R, de Keizer C, den Dekker A J. Parametric Bayesian filters for nonlinear stochastic dynamical systems: a survey. IEEE Transactions on Cybernetics, 2013, 43(6): 1607-1624
|
[18]
|
Patwardhan S C, Narasimhan S, Jagadeesan P, Gopaluni B, Shah S L. Nonlinear Bayesian state estimation: a review of recent developments. Control Engineering Practice, 2012, 20(10): 933-953
|
[19]
|
Li X R, Jilkov V P. A survey of maneuvering target tracking, part VI: approximate nonlinear density filtering in discrete time. In: Proceedings of the SPIE 8393, Signal and Data Processing of Small Targets 2012, 83930V. Baltimore, Maryland, USA: SPIE, 2012.
|
[20]
|
Mihaylova L, Carmi A Y, Septier F, Gning A, Pang S K, Godsill S. Overview of Bayesian sequential Monte Carlo methods for group and extended object tracking. Digital Signal Processing, 2014, 25: 1-16
|
[21]
|
Yang Xiao-Jun, Pan Quan, Wang Rui, Zhang Hong-Cai. Development and prospect of particle filtering. Control Theory Applications, 2006, 23(2): 261-267 (杨小军, 潘泉, 王睿, 张洪才. 粒子滤波进展与展望. 控制理论与应用, 2006, 23(2): 261-267)
|
[22]
|
Cheng Shui-Ying, Zhang Jian-Yun. Review on particle filters. Journal of Astronautics, 2008, 29(4): 1109-1111 (程水英, 张剑云. 粒子滤波评述. 宇航学报, 2008, 29(4): 1109-1111)
|
[23]
|
Wang Fa-Sheng, Lu Ming-Yu, Zhao Qing-Jie, Yuan Ze-Jian. Particle filtering algorithm. Chinese Journal of Computers, 2014, 37(8): 1679-1694 (王法胜, 鲁明羽, 赵清杰, 袁泽剑. 粒子滤波算法. 计算机学报, 2014, 37(8): 1679-1694)
|
[24]
|
Cheng Shui-Ying, Zou Ji-Wei, Tang Peng. Review on derivative-free nonlinear Bayesian filtering methods. Journal of Astronautics, 2009, 30(3): 843-857 (程水英, 邹继伟, 汤鹏. 免微分非线性Bayesian滤波方法评述. 宇航学报, 2009, 30(3): 843-857)
|
[25]
|
Creal D. A survey of sequential Monte Carlo methods for economics and finance. Econometric Reviews, 2012, 31(3): 245-296
|
[26]
|
Lopes H F, Tsay R S. Particle filters and Bayesian inference in financial econometrics. Journal of Forecasting, 2011, 30(1): 168-209
|
[27]
|
Van Leeuwen P J. Particle filtering in geophysical systems. Monthly Weather Review, 2009, 137(12): 4089-4114
|
[28]
|
Kostanjar Z, Jeren B, Cerovec J. Particle filters in decision making problems under uncertainty. Automatika, 2009, 50(3-4): 245-251
|
[29]
|
Thrun S, Burgard W, Fox D. Probabilistic Robotics. Cambridge: MIT Press, 2005.
|
[30]
|
Andrieu C, Doucet A, Singh S S, Tadic V B. Particle methods for change detection, system identification, and control. Proceedings of the IEEE, 2004, 92(3): 423-438
|
[31]
|
Johansen A M. Some Non-Standard Sequential Monte Carlo Methods and Their Applications [Ph.,D. dissertation], University of Cambridge, Cambridge, UK, 2006
|
[32]
|
Kantas N, Doucet A, Singh S S, Maciejowski J. An overview of sequential Monte Carlo methods for parameter estimation on general state space models. In: Proceedings of the 15th IFAC Symposium on System Identification. Saint-Malo Convention Center, Saint-Malo, France: IFAC, 2009. 774-785
|
[33]
|
Gao M, Zhang H. Sequential Monte Carlo methods for parameter estimation in nonlinear state-space models. Computers and Geosciences, 2012, 44: 70-77
|
[34]
|
Li T C, Bolic M, Djuric P M. Resampling methods for particle filtering: classification, implementation, and strategies. IEEE Signal Processing Magazine, 2015, 32(3): 70-86
|
[35]
|
Li T C, Villarrubia G, Sun S D, Corchado J M, Bajo J. Resampling methods for particle filtering: identical distribution, a new method, and comparable study. Frontiers of Information Technology and Electronic Engineering, 2015, 16(11): 969-984
|
[36]
|
Hlinka O, Hlawatsch F, Djuric P M. Distributed particle filtering in agent networks: a survey, classification, and comparison. IEEE Signal Processing Magazine, 2013, 30(1): 61-81
|
[37]
|
Hu X L, Schon T B, Ljung L. A general convergence result for particle filtering. IEEE Transactions on Signal Processing, 2011, 59(7): 3424-3429
|
[38]
|
Mbalawata I S, Srkk S. Moment conditions for convergence of particle filters with unbounded importance weights. Signal Processing, 2016, 118: 133-138
|
[39]
|
Crisan D, Li K. Generalised particle filters with Gaussian mixtures. Stochastic Processes and their Applications, 2015, 125(7): 2643-2673
|
[40]
|
Whiteley N P. Stability properties of some particle filters. The Annals of Applied Probability, 2013, 23(6): 2500-2537
|
[41]
|
Douc R, Moulines E, Olsson J. Long-term stability of sequential Monte Carlo methods under verifiable conditions. The Annals of Applied Probability, 2014, 24(5): 1767-1802
|
[42]
|
Straka O, Simandl M. A survey of sample size adaptation techniques for particle filters. In: Proceedings of the 15th IFAC Symposium on System Identification. Saint-Malo Convention Center, Saint-Malo, France: IFAC, 2009. 1358-1363
|
[43]
|
Del Moral P, Doucet A. Particle methods: an introduction with applications. ESAIM: Proceedings, 2014, 44: 1-46
|
[44]
|
Qiu C Z, Zhang Z Y, Lu H Z, Luo H W. A survey of motion-based multitarget tracking methods. Progress in Electromagnetics Research B, 2015, 62: 195-223
|
[45]
|
Yang Wei, Fu Yao-Wen, Long Jian-Qian, Li Xiang. The FISST-based target tracking techniques: a survey. Acta Electronica Sinica, 2012, 40(7): 1440-1448 (杨威, 付耀文, 龙建乾, 黎湘. 基于有限集统计学理论的目标跟踪技术研究综述. 电子学报, 2012, { 40}(7): 1440-1448)
|
[46]
|
Yang Feng, Wang Yong-Qi, Liang Yan, Pan Quan. A survey of PHD filter based multi-target tracking. Acta Automatica Sinica, 2013, 39(11): 1944-1956 (杨峰, 王永齐, 梁彦, 潘泉. 基于概率假设密度滤波方法的多目标跟踪技术综述. 自动化学报, 2013, 39(11): 1944-1956)
|
[47]
|
Pitt M K, Shephard N. Filtering via simulation: auxiliary particle filters. Journal of the American Statistical Association, 1999, 94(446): 590-591
|
[48]
|
van der Merwe R, Doucet A, de Freitas N, Wan E. The unscented particle filter. Narual Information Processing System, 2000. 584-590
|
[49]
|
Yang T, Mehta P G, Meyn S P. Feedback particle filter. IEEE Transactions on Automatic Control, 2013, 58(10): 2465-2480
|
[50]
|
Yu J X, Tang Y, Chen X C, Liu W J. Choice mechanism of proposal distribution in particle filter. In: Proceedings of the 2010 8th World Congress on Intelligent Control and Automation. Ji'nan, China: IEEE, 2010. 1051-1056
|
[51]
|
Li T C, Corchado J M, Bajo J, Sun S D, de Paz J F. Effectiveness of Bayesian filters: an information fusion perspective. Information Sciences, 2016, 329: 670-689
|
[52]
|
Li T C. A gap between simulation and practice for recursive filters: on the state transition noise. 2013, arXiv: 1308. 1056
|
[53]
|
Crisan D, Mguez J. Particle-kernel estimation of the filter density in state-space models. Bernoulli, 2014, 20(4): 1879-1929
|
[54]
|
Ades M, Van Leeuwen P J. An exploration of the equivalent weights particle filter. Quarterly Journal of the Royal Meteorological Society, 2013, 139(672): 820-840
|
[55]
|
Schon T, Gustafsson F, Nordlund P J. Marginalized particle filters for mixed linear/nonlinear state-space models. IEEE Transactions on Signal Processing, 2005, 53(7): 2279-2289
|
[56]
|
Doucet A, de Freitas N, Murphy K, Russell S. Rao-Blackwellised particle filtering for dynamic Bayesian networks. In: Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2000. 176-183
|
[57]
|
Chavali P, Nehorai A. Hierarchical particle filtering for multi-modal data fusion with application to multiple-target tracking. Signal Processing, 2014, 97: 207-220
|
[58]
|
Chen T S, Schon T B, Ohlsson H, Ljung L. Decentralized particle filter with arbitrary state decomposition. IEEE Transactions on Signal Processing, 2011, 59(2): 465-478
|
[59]
|
Smidl V, Quinn A. Variational Bayesian filtering. IEEE Transactions on Signal Processing, 2008, 56(10): 5020-5030
|
[60]
|
Li T C, Sun S D, Corchado J M, Sattar T P, Si S B. Numerical fitting-based likelihood calculation to speed up the particle Filter. International Journal of Adaptive Control and Signal Processing, arXiv: 1308.2401v3 (DOI: 10.1002/acs.2656)
|
[61]
|
Liu H P, Sun F C. Efficient visual tracking using particle filter with incremental likelihood calculation. Information Sciences, 2012, 195: 141-153
|
[62]
|
Boers Y. On the number of samples to be drawn in particle filtering. In: Proceedings of IEE Colloquium on Target Tracking: Algorithms and Applications. London: IET, 1999. 5/1-5/6
|
[63]
|
Straka O, Simandl M. Sample size adaptation for particle filters. In: Proceedings of the 16th IFAC symposium on Automatic Control in Aerospace. Saint Petersburg, Russia, 2004. 444-449
|
[64]
|
Fearnhead P, Liu Z. On-line inference for multiple changepoint problems. Journal of the Royal Statistical Society: Series B, 2007, 69(4): 589-605
|
[65]
|
Pan P, Schonfeld D. Dynamic proposal variance and optimal particle allocation in particle filtering for video tracking. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(9): 1268-1279
|
[66]
|
Fox D. Adapting the sample size in particle filters through KLD-sampling. The International Journal of Robotics Research, 2003, 22(12): 985-1003
|
[67]
|
Soto A. Self adaptive particle filter. In: Proceedings of the 19th International Joint Conferences on Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2005. 1398-1403
|
[68]
|
Li T, Sun S, Sattar T P. Adapting sample size in particle filters through KLD-resampling. Electronics Letters, 2013, 49(12): 740-742
|
[69]
|
Hassan W, Bangalore N, Birch P, Young R, Chatwin C. An adaptive sample count particle filter. Computer Vision and Image Understanding, 2012, 116(12): 1208-1222
|
[70]
|
Elvira V, Mguez J, Djurić P M. Adapting the number of particles in sequential Monte Carlo methods through an online scheme for convergence assessment. 2015, arXiv: 1509.04879
|
[71]
|
Li Tian-Cheng, Sun Shu-Dong. Double-resampling based Monte Carlo localization for mobile robot. Acta Automatica Sinica, 2010, 36(9): 1279-1286 (李天成, 孙树栋. 采用双重采样的移动机器人Monte Carlo定位方法. 自动化学报, 2010, 36(9): 1279-1286)
|
[72]
|
Lopez F, Zhang L X, Mok A, Beaman J. Particle filtering on GPU architectures for manufacturing applications. Computers in Industry, 2015, 71: 116-127
|
[73]
|
Murray L. GPU acceleration of the particle filter: the Metropolis resampler. 2012, arXiv: 1202.6163
|
[74]
|
Andrieu C, Doucet A, Holenstein R. Particle Markov chain Monte Carlo methods. Journal of the Royal Statistical Society: Series B, 2010, 72: 269-302
|
[75]
|
Chopin N, Jacob P E, Papaspiliopoulos O. SMC2: an efficient algorithm for sequential analysis of state space models. Journal of the Royal Statistical Society: Series B, 2013, 75(3): 397-426
|
[76]
|
Gu D B, Sun J X, Hu Z, Li H Z. Consensus based distributed particle filter in sensor networks. In: Proceeding of the International Conference on Information Automation. Changsha, China: IEEE, 2008. 302-307
|
[77]
|
Dias S S, Bruno M G S. Cooperative target tracking using decentralized particle filtering and RSS sensors. IEEE Transactions on Signal Processing, 2013, 61(14): 3632-3646
|
[78]
|
Hlinka O, Hlawatsch F, Djuric P M. Consensus-based distributed particle filtering with distributed proposal adaptation. IEEE Transactions on Signal Processing, 2014, 62(12): 3029-3041
|
[79]
|
Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1): 215-233
|
[80]
|
Sayed A H. Adaptive networks. Proceedings of the IEEE, 2014, 102(4): 460-497
|
[81]
|
Li T C, Sun S D, Bolić M, Corchado J M. Algorithm design for parallel implementation of the SMC-PHD filter. Signal Processing, 2016, 119: 115-127
|
[82]
|
Beaudeau J P, Bugallo M F, Djuric P M. RSSI-based multi-target tracking by cooperative agents using fusion of cross-target information. IEEE Transactions on Signal Processing, 2015, 63(19): 5033-5044
|
[83]
|
Uney M, Clark D E, Julier S J. Distributed fusion of PHD filters via exponential mixture densities. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 521-531
|
[84]
|
Mohammadi A, Asif A. Distributed consensus + innovation particle filtering for bearing/range tracking with communication constraints. IEEE Transactions on Signal Processing, 2015, 63(3): 620-635
|
[85]
|
Kong A, Liu J S, Wong W H. Sequential imputations and Bayesian missing data problems. Journal of the American Statistical Association, 1994, 89(425): 278-288
|
[86]
|
Li T C, Sattar T P, Han Q, Sun S D. Roughening methods to prevent sample impoverishment in the particle PHD filter. In: Proceedings of the 16th International Conference on Information Fusion. Istanbul, Turkey: IEEE, 2013. 17-22
|
[87]
|
Kotecha J H, Djuric P M. Gaussian particle filtering. IEEE Transactions on Signal Processing, 2003, 51(10): 2592-2601
|
[88]
|
Kotecha J H, Djuric P M. Gaussian sum particle filtering. IEEE Transactions on Signal Processing, 2003, 51(10): 2602-2612
|
[89]
|
Yuan Ze-Jian, Zheng Nan-Ning, Jia Xin-Chun. The Gauss-Hermite particle filter. Acta Electronica Sinica, 2003, 31(7): 970-973 (袁泽剑, 郑南宁, 贾新春. 高斯,--,厄米特粒子滤波器. 电子学报, 2003, 31(7): 970-973)
|
[90]
|
Musso C, Oudjane N, Le Gland F. Improving regularised particle filters. Sequential Monte Carlo Methods in Practice. New York, NY, USA: Springer-Verlag, 2001. 247-271
|
[91]
|
Fan J Q, Yao Q W. Nonlinear Time Series: Nonparametric and Parametric Methods. New York: Springer-Verlag, 2003.
|
[92]
|
Gning A, Ristic B, Mihaylova L, Abdallah F. An introduction to box particle filtering. IEEE Signal Processing Magazine, 2013, 30(4): 166-171
|
[93]
|
Stano P M, Lendek Z, Babuşka R. Saturated particle filter: almost sure convergence and improved resampling. Automatica, 2013, 49(1): 147-159
|
[94]
|
Zhao Z G, Huang B, Liu F. Constrained particle filtering methods for state estimation of nonlinear process. AIChE Journal, 2014, 60(6): 2072-2082
|
[95]
|
Kyriakides I, Morrell D, Papandreou-Suppappola A. Sequential Monte Carlo methods for tracking multiple targets with deterministic and stochastic constraints. IEEE Transactions on Signal Processing, 2008, 56(3): 937-948
|
[96]
|
Vo B T, Vo B N, Cantoni A. Bayesian filtering with random finite set observations. IEEE Transactions on Signal Processing, 2008, 56(4): 1313-1326
|
[97]
|
Ristic B, Vo B T, Vo B N, Farina A. A tutorial on Bernoulli filters: theory, implementation and applications. IEEE Transactions on Signal Processing, 2013, 61(13): 3406-3430
|
[98]
|
Gning A, Ristic B, Mihaylova L. Bernoulli particle/box-particle filters for detection and tracking in the presence of triple measurement uncertainty. IEEE Transactions on Signal Processing, 2012, 60(5): 2138-2151
|
[99]
|
Li X R, Jilkov V P. Survey of maneuvering target tracking. Part I: dynamic models. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1333-1364
|
[100]
|
Li X R, Jilkov V P. Survey of maneuvering target tracking. Part V: multiple-model methods. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1255-1321
|
[101]
|
Kreucher C, Bell K, Sobota D. A comparison of tracking algorithms for supermaneuverable targets. In: Proceedings of the 18th International Conference on Information Fusion. Washington, DC: IEEE, 2015. 534-541
|
[102]
|
McGinnity S, Irwin G W. Multiple model bootstrap filter for maneuvering target tracking. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3): 1006-1012
|
[103]
|
Driessen H, Boers Y. Efficient particle filter for jump Markov nonlinear systems. IEE Proceedings Radar, Sonar and Navigation, 2005, 152(5): 323-326
|
[104]
|
Wang Wei, Yu Yu-Kui. Multi-try and multi-model particle filter for maneuvering target tracking. Acta Automatica Sinica, 2015, 41(6): 1201-1212 (王伟, 余玉揆. 多点测试的多模型机动目标跟踪算法. 自动化学报, 2015, 41(6): 1201-1212)
|
[105]
|
Boers Y, Driessen J N. Interacting multiple model particle filter. IEE Proceedings Radar, Sonar and Navigation, 2003, 150(5): 344-349
|
[106]
|
Bar-Shalom Y, Challa S, Blom H A P. IMM estimator versus optimal estimator for hybrid systems. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(3): 986-991
|
[107]
|
Blom H A P, Bloem E A. Exact Bayesian and particle filtering of stochastic hybrid systems. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 55-70
|
[108]
|
Godsill S J, Vermaak J, Ng W, Li J F. Models and algorithms for tracking of maneuvering objects using variable rate particle filters. Proceedings of the IEEE, 2007, 95(5): 925-952
|
[109]
|
Nemeth C, Fearnhead P, Mihaylova L. Sequential Monte Carlo methods for state and parameter estimation in abruptly changing environments. IEEE Transactions on Signal Processing, 2014, 62(5): 1245-1255
|
[110]
|
Orguner U, Gustafsson F. Target tracking with particle filters under signal propagation delays. IEEE Transactions on Signal Processing, 2011, 59(6): 2485-2495
|
[111]
|
Berntorp K, Robertsson A, Arzen K E. Rao-Blackwellized particle filters with out-of-sequence measurement processing. IEEE Transactions on Signal Processing, 2014, 62(24): 6454-6467
|
[112]
|
Hlinka O, Hlawatsch F, Djuric P M. Distributed sequential estimation in asynchronous wireless sensor networks. IEEE Signal Processing Letters, 2015, 22(11): 1965-1969
|
[113]
|
Maiz C S, Molanes-Lopez E M, Miguez J, Djuric P M. A particle filtering scheme for processing time series corrupted by outliers. IEEE Transactions on Signal Processing, 2012, 60(9): 4611-4627
|
[114]
|
Su Y Y, Zhao Q J, Zhao L J, Gu D B. Abrupt motion tracking using a visual saliency embedded particle filter. Pattern Recognition, 2014, 47: 1826-1834
|
[115]
|
Bhaskar H, Dwivedi K, Dogra D P, Al-Mualla M, Mihaylova L. Autonomous detection and tracking under illumination changes, occlusions and moving camera. Signal Processing, 2015, 117: 343-354
|
[116]
|
Mahler R P S. Statistical Multisource-Multitarget Information Fusion. Boston, Ma., London: Artech House, 2007.
|
[117]
|
Mahler R P S. Advances in Statistical Multisource-Multitarget Information Fusion. Boston, Ma., London: Artech House, 2014.
|
[118]
|
Bernardo J T. Cognitive and functional frameworks for hard/soft fusion for the condition monitoring of aircraft. In: Proceedings of the 18th International Conference on Information Fusion. Washington, DC: IEEE, 2015. 287-294
|
[119]
|
Li X R, Bar-Shalom Y. Tracking in clutter with nearest neighbor filters: analysis and performance. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(3): 995-1010
|
[120]
|
Reid D B. An algorithm for tracking multiple targets. IEEE Transactions on Automatic Control, 1979, 24(6): 843-854
|
[121]
|
Streit R L, Luginbuhl T E. A probabilistic multi-hypothesis tracking algorithm without enumeration and pruning. In: Proceedings of the 6th Joint Service Data Fusion Symposium. Laurel, Maryland, 1993. 1015-1024
|
[122]
|
Fortmann T E, Bar-Shalom Y, Scheffe M. Sonar tracking of multiple targets using joint probabilistic data association. IEEE Journal of Oceanic Engineering, 1983, 8(3): 173-184
|
[123]
|
Vermaak J, Godsill S J, Perez P. Monte Carlo filtering for multi-target tracking and data association. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(1): 309-332
|
[124]
|
Oh S, Russell S, Sastry S. Markov chain Monte Carlo data association for multi-target tracking. IEEE Transactions on Automatic Control, 2009, 54(3): 481-497
|
[125]
|
Srkk S, Vehtari A, Lampinen J. Rao-Blackwellized particle filter for multiple target tracking. Information Fusion, 2007, 8(1): 2-15
|
[126]
|
Chavali P, Nehorai A. Concurrent particle filtering and data association using game theory for tracking multiple maneuvering targets. IEEE Transactions on Signal Processing, 2013, 61(20): 4934-4948
|
[127]
|
Silbert M E, Agate C S. New metrics for quantifying data association performance. In: Proceedings of the 17th International Conference on Information Fusion. Salamanca, Spain: IEEE, 2014. 1-8
|
[128]
|
Stone L D, Barlow C A, Corwin T L. Bayesian Multiple Target Tracking. Boston, Ma., London: Artech House, 1999.
|
[129]
|
Kreucher C, Kastella K, Hero A O III. Multitarget tracking using the joint multitarget probability density. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1396-1414
|
[130]
|
Yi W, Morelande M R, Kong L J, Yang J Y. A computationally efficient particle filter for multitarget tracking using an independence approximation. IEEE Transactions on Signal Processing, 2013, 61(4): 843-856
|
[131]
|
Garca-Fernndez F. Detection and Tracking of Multiple Targets Using Wireless Sensor Networks [Ph.,D. dissertation], Universidad Politcnica de Madrid, Spain, 2011
|
[132]
|
Garca-FernndezA F, Grajal J, Morelande M R. Two-layer particle filter for multiple target detection and tracking. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 1569-1588
|
[133]
|
Georgy J, Noureldin A, Mellema G R. Clustered mixture particle filter for underwater multitarget tracking in multistatic active sonobuoy systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2012, 42(4): 547-560
|
[134]
|
Morelande M R, Kreucher C M, Kastella K. A Bayesian approach to multiple target detection and tracking. IEEE Transactions on Signal Processing, 2007, 55(5): 1589-1604
|
[135]
|
Bugallo M F, Djuric P M. Target tracking by symbiotic particle filtering. In: Proceedings of the 2010 IEEE Aerospace Conference. Big Sky, Montana: IEEE, 2010. 1-7
|
[136]
|
Houssineau J, Delande E, Clark D. Notes of the summer school on finite set statistics. 2013, arXiv: 1308.2586
|
[137]
|
Streit R, Degen C, Koch W. The pointillist family of multitarget tracking filters. 2015, arxiv: 1505.08000
|
[138]
|
Mahler R P S. Multitarget Bayes filtering via first-order multitarget moments. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178
|
[139]
|
Mahler R P S. PHD filters of higher order in target number. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1523-1543
|
[140]
|
Vo B T, Vo B N, Cantoni A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Transactions on Signal Processing, 2009, 57(2): 409-423
|
[141]
|
Vo B, Singh S, Doucet A. Sequential Monte Carlo implementation of the PHD filter for multi-target tracking. In: Proceedings of the 6th International Conference of Information Fusion. Cairns, Queensland, Australia: IEEE, 2003. 792-799
|
[142]
|
Zajic T, Mahler R P S. A particle-systems implementation of the PHD multitarget tracking filter. In: Proceedings of the SPIE 5096, Signal Processing, Sensor Fusion, and Target Recognition XII. Orlando, FL: SPIE, 2003. 291-299
|
[143]
|
Sidenbladh H. Multi-target particle filtering for the probability hypothesis density. In: Proceedings of the 6th International Conference of Information Fusion. Cairns, Queensland, Australia: IEEE, 2003. 800-806
|
[144]
|
Vo B N, Singh S, Doucet A. Sequential Monte Carlo methods for multi-target filtering with random finite sets. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224-1245
|
[145]
|
|
[146]
|
Houssineau J, Laneuville D. PHD filter with diffuse spatial prior on the birth process with applications to GM-PHD filter. In: Proceedings of the 13th Conference on Information Fusion. Edinburgh: IEEE, 2010. 1-8
|
[147]
|
Johansen A M, Singh S S, Doucet A, Vo B N. Convergence of the SMC implementation of the PHD filter. Methodology and Computing in Applied Probability, 2006, 8(2): 265-291
|
[148]
|
Clark D E, Bell J. Convergence results for the particle PHD filter. IEEE Transactions on Signal Processing, 2006, 54(7): 2652-2661
|
[149]
|
Braca P, Marano S, Matta V, Willett P. Asymptotic efficiency of the PHD in multitarget/multisensor estimation. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 553-564
|
[150]
|
Nandakumaran N, Punithakumar K, Kirubarajan T. Improved multi-target tracking using probability hypothesis density smoothing. In: Proceedings of the SPIE 6699, Signal and Data Processing of Small Targets. San Diego, CA: SPIE, 2007
|
[151]
|
Mahler R P S, Vo B N, Vo B T. Forward-backward probability hypothesis density smoothing. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 707-728
|
[152]
|
Punithakumar K, Kirubarajan T, Sinha A. Multiple-model probability hypothesis density filter for tracking maneuvering targets. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 87-98
|
[153]
|
Lian Feng, Han Chong-Zhao, Liu Wei-Feng, Yuan Xiang-Hui. Multiple-model probability hypothesis density smoother. Acta Automatica Sinica, 2010, 36(7): 939-950 (连峰, 韩崇昭, 刘伟峰, 元向辉. 多模型概率假设密度平滑器. 自动化学报, 2010, 36(7): 939-950)
|
[154]
|
Petetin Y, Desbouvries F. Bayesian multi-object filtering for pairwise Markov chains. IEEE Transactions on Signal Processing, 2013, 61(18): 4481-4490
|
[155]
|
Pace M, Del Moral P. Mean-field PHD filters based on generalized Feynman-Kac flow. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 484-495
|
[156]
|
Mahler R. Tracking targets with pairwise-Markov dynamics. In: Proceedings of the 18th International Conference on Information Fusion. Washington, DC: IEEE, 2015. 280-286
|
[157]
|
Streit R L, Stone L D. Bayes derivation of multitarget intensity filters. In: Proceedings of the 11th International Conference on Information Fusion. Cologne: IEEE, 2008. 1-8
|
[158]
|
Streit R. The probability generating functional for finite point processes, and its application to the comparison of PHD and intensity filters. Journal of Advances in Information Fusion, 2013, 8(2): 119-132
|
[159]
|
Whiteley N, Singh S, Godsill S. Auxiliary particle implementation of probability hypothesis density filter. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1437-1454
|
[160]
|
Schikora M, Gning A, Mihaylova L, Cremers D, Koch W. Box-particle PHD filter for multi-target tracking. In: Proceedings of the 15th International Conference on Information Fusion. Singapore: IEEE, 2012. 106-113
|
[161]
|
Vihola M. Rao-Blackwellised particle filtering in random set multitarget tracking. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 689-705
|
[162]
|
Clark D, Vo B T, Vo B N. Gaussian particle implementations of probability hypothesis density filters. In: Proceedings of the 2007 IEEE Aerospace Conference. Big Sky, Montana: IEEE, 2007. 1-11
|
[163]
|
Li T C, Sun S D, Sattar T P. High-speed sigma-gating SMC-PHD filter. Signal Processing, 2013, 93(9): 2586-2593
|
[164]
|
Shi Z G, Liu Y K, Hong S H, Chen J M, Shen X M. POSE: design of hardware-friendly particle-based observation selection PHD filter. IEEE Transactions on Industrial Electronics, 2014, 61(4): 1944-1956
|
[165]
|
Del Coco M, Cavallaro A. Parallel particle-PHD filter. In: Proceedings of the 2014 International Conference on Acoustics, Speech and Signal Processing. Florence, Italy: IEEE, 2014. 6578-6582
|
[166]
|
Clark D, Mahler R. Generalized PHD filters via a general chain rule. In: Proceedings of the 15th International Conference on Information Fusion. Singapore: IEEE, 2012. 157-164
|
[167]
|
Delande E, Uney M, Houssineau J, Clark D. Regional variance for multi-object filtering. IEEE Transactions on Signal Processing, 2014, 62(13): 3415-3428
|
[168]
|
Vo B T, Vo B N, Cantoni A. Analytic implementations of the Cardinalized probability hypothesis density filter. IEEE Transactions on Signal Processing, 2007, 55(7): 3553-3567
|
[169]
|
Mahler R. Statistics 102 for multisource-multitarget detection and tracking. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 376-389
|
[170]
|
Mahler R. Linear-complexity CPHD filters. In: Proceedings of the 13th Conference on Information Fusion. Edinburgh, Scotland, United Kingdom: IEEE, 2010. 1-8
|
[171]
|
Nannuru S, Coates M, Mahler R. Computationally-tractable approximate PHD and CPHD filters for superpositional sensors. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 410-420
|
[172]
|
Ouyang C, Ji H, Li C. Improved multi-target multi-Bernoulli filter. IET Radar, Sonar Navigation, 2012, 6(6): 458-464
|
[173]
|
Dunne D, Kirubarajan T. Multiple model multi-Bernoulli filters for manoeuvering targets. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4): 2679-2692
|
[174]
|
Lian F, Li C, Han C Z, Chen H. Convergence analysis for the SMC-MeMBer and SMC-CBMeMBer filters. Journal of Applied Mathematics, 2012, 2012: Article ID 584140
|
[175]
|
Reuter S, Vo B T, Vo B N, Dietmayer K. The labeled Multi-Bernoulli filter. IEEE Transactions on Signal Processing, 2014, 62(12): 3246-3260
|
[176]
|
Vo B N, Vo B T, Phung D. Labeled random finite sets and the Bayes multi-target tracking filter. IEEE Transactions on Signal Processing, 2014, 62(24): 6554-6567
|
[177]
|
Papi F, Vo B N, Vo B T, Fantacci C, Beard M. Generalized labeled multi-Bernoulli approximation of multi-object densities. IEEE Transactions on Signal Processing, 2015, 63(20): 5487-5497
|
[178]
|
Papi F, Du Y K. A particle multi-target tracker for superpositional measurements using labeled random finite sets. IEEE Transactions on Signal Processing, 2015, 63(16): 4348-4358
|
[179]
|
Vo B T, Vo B N, Hoseinnezhad R, Mahler R P S. Robust multi-Bernoulli filtering. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 399-409
|
[180]
|
Wang B L, Yi W, Li S Q, Morelande M R, Kong L J, Yang X B. Distributed multi-target tracking via generalized multi-Bernoulli random finite sets. In: Proceedings of the 18th International Conference on Information Fusion. Washington, DC: IEEE, 2015. 253-261
|
[181]
|
Koch W, van Keuk G. Multiple hypothesis track maintenance with possibly unresolved measurements. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(3): 883-892
|
[182]
|
Lian F, Han C Z, Liu W F, Liu J, Sun J. Unified cardinalized probability hypothesis density filters for extended targets and unresolved targets. Signal Processing, 2012, 92(7): 1729-1744
|
[183]
|
Drummond O E, Blackman S S, Petrisor G C. Tracking clusters and extended objects with multiple sensors. In: Proceedings of the SPIE 1305, Signal and Data Processing of Small Targets. Los Angeles, CA, 1990. 362-375
|
[184]
|
Koch J W. Bayesian approach to extended object and cluster tracking using random matrices. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1042-1059
|
[185]
|
Lan J, Li X R. Tracking of maneuvering non-ellipsoidal extended object or target group using random matrix. IEEE Transactions on Signal Processing, 2014, 62(9): 2450-2463
|
[186]
|
Granstrom K, Orguner U. On Spawning and combination of extended/group targets modeled with random matrices. IEEE Transactions on Signal Processing, 2013, 61(3): 678-692
|
[187]
|
Mahler R. PHD filters for nonstandard targets, I: extended targets. In: Proceedings of the 12th International Conference on Information Fusion. Seattle WA: IEEE, 2009. 915-921
|
[188]
|
Li Y X, Xiao H T, Song Z Y, Hu R, Fan H Q. A new multiple extended target tracking algorithm using PHD filter. Signal Processing, 2013, 93(12): 3578-3588
|
[189]
|
Hammarstrand L, Lundgren M, Svensson L. Adaptive radar sensor model for tracking structured extended objects. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 1975-1995
|
[190]
|
Clark D E, Houssineau J. Faa di Bruno's formula for Gateaux differentials and interacting stochastic population processes. 2012, arXiv: 1202.0264
|
[191]
|
Swain A, Clark D. The single-group PHD filter: an analytic solution. In: Proceedings of the 14th International Conference on Information Fusion. Chicago, Illinois, USA: IEEE, 2011. 1-8
|
[192]
|
Gning A, Mihaylova L, Maskell S, Pang S K, Godsill S. Group object structure and state estimation with evolving networks and Monte Carlo methods. IEEE Transactions on Signal Processing, 2011, 59(4): 1383-1395
|
[193]
|
Li Zhen-Xing, Liu Jin-Mang, Li Song, Bai Dong-Ying, Ni Peng. Group targets tracking algorithm based on box particle filter. Acta Automatica Sinica, 2015, 41(4): 785-798 (李振兴, 刘进忙, 李松, 白东颖, 倪鹏. 基于箱式粒子滤波的群目标跟踪算法. 自动化学报, 2015, 41(4): 785-798)
|
[194]
|
Sathyan T, Chin T J, Arulampalam S, Suter D. A multiple hypothesis tracker for multitarget tracking with multiple simultaneous measurements. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 448-460
|
[195]
|
Vo B N, Vo B T, Pham N T, Suter D. Joint detection and estimation of multiple objects from image observations. IEEE Transactions on Signal Processing, 2010, 58(10): 5129-5141
|
[196]
|
Lian Feng, Lv Ning, Han Chong-Zhao. The recursive form of error bound for joint detection and estimation of groups. Acta Automatica Sinica, 2015, 41(12): 1990-1999 (连峰, 吕宁, 韩崇昭. 群目标联合检测与估计误差界的递推形式. 自动化学报, 2015, 41(12): 1990-1999)
|
[197]
|
Li X R. Optimal Bayes joint decision and estimation. In: Proceedings of the 10th International Conference on Information Fusion. Quebec City, Canada: IEEE, 2007. 1-6
|
[198]
|
Davey S J, Rutten M G, Cheung B. A comparison of detection performance for several track-before-detect algorithms. In: Proceedings of the 11th International Conference on Information Fusion. Cologne: IEEE, 2008. 1-8
|
[199]
|
Fritsche C, Ozkan E, Svensson L, Gustafsson F. A fresh look at Bayesian Cramr-Rao bounds for discrete-time nonlinear filtering. In: Proceedings of the 17th International Conference on Information Fusion. Salamanca, Spain: IEEE, 2014. 1-8
|
[200]
|
Tulsyan A, Huang B, Gopaluni R B, Forbes J F. Performance assessment, diagnosis, and optimal selection of non-linear state filters. Journal of Process Control, 2014, 24(2): 460-478
|
[201]
|
Caron F, Del Moral P, Doucet A, Pace M. Particle approximation of the intensity measures of a spatial branching point process arising in multitarget tracking. SIAM Journal on Control and Optimization, 2011, 49(4): 1766-1792
|
[202]
|
Datta Gupta S, Coates M, Rabbat M. Error propagation in Gossip-based distributed particle filters. IEEE Transactions on Signal and Information Processing over Networks, 2015, 1(3): 148-163
|
[203]
|
Zhou Y, Li J X, Wang D L. Posterior Cramr-Rao lower bounds for target tracking in sensor networks with quantized range-only measurements. IEEE Signal Processing Letters, 2010, 17(2): 157-160
|
[204]
|
Carvalho C M, Johannes M S, Lopes H F, Polson N G. Particle learning and smoothing. Statistical Science, 2010, 25(1): 88-106
|
[205]
|
Yang J L, Ge H W. An improved multi-target tracking algorithm based on CBMeMber filter and variational Bayesian approximation. Signal Processing, 2013, 93(9): 2510-2515
|
[206]
|
Mahler R P S, Vo B T, Vo B N. CPHD Filtering with unknown clutter rate and detection profile. IEEE Transactions on Signal Processing, 2011, 59(8): 3497-3513
|
[207]
|
Lian F, Han C Z, Liu W F. Estimating unknown clutter intensity for PHD filter. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 2066-2078
|
[208]
|
Yan Xiao-Xi, Han Chong-Zhao. Multiple target tracking algorithm based on online estimation of target birth intensity. Acta Automatica Sinica, 2011, 37(8): 963-972 (闫小喜, 韩崇昭. 基于目标出生强度在线估计的多目标跟踪算法. 自动化学报, 2011, 37(8): 963-972)
|
[209]
|
Ristic B, Clark D, Vo B N, Vo B T. Adaptive target birth intensity for PHD and CPHD filters. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1656-1668
|
[210]
|
Li T C, Sun S D, Corchado J M, Siyau M F. Random finite set-based Bayesian filters using magnitude-adaptive target birth intensity. In: Proceedings of the 17th International Conference on Information Fusion. Salamanca, Spain: IEEE, 2014. 1-8
|
[211]
|
Clark D E, Bell J. Multi-target state estimation and track continuity for the particle PHD filter. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1441-1453
|
[212]
|
Dunne D, Ratnasingham T, Lang T, Kirubarajan T. SMC-PHD-based multi-target tracking with reduced peak extraction. In: Proceedings of the SPIE 7445, Signal and Data Processing of Small Targets. San Diego, CA: SPIE, 2009. 74450F-1-74450F-12
|
[213]
|
Liu W F, Han C Z, Lian F, Zhu H Y. Multitarget state extraction for the PHD filter using MCMC approach. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2): 864-883
|
[214]
|
Tobias M, Lanterman A D. Techniques for birth-particle placement in the probability hypothesis density particle filter applied to passive radar. IET Radar, Sonar and Navigation, 2008, 2(5): 351-365
|
[215]
|
Tang X, Wei P. Multi-target state extraction for the particle probability hypothesis density filter. IET Radar, Sonar and Navigation, 2011, 5(8): 877-883
|
[216]
|
Xu B L, Xu H G, Zhu J H. Ant clustering PHD filter for multiple-target tracking. Applied Soft Computing, 2011, 11(1): 1074-1086
|
[217]
|
Zhao L L, Ma P J, Su X H. An improved peak extraction algorithm for probability hypothesis density particle filter. Advanced Science Letters, 2012, 6(1): 88-95
|
[218]
|
Lin L K, Xu H, Sheng W D, An W. Multi-target state-estimation technique for the particle probability hypothesis density filter. Science China Information Sciences, 2012, 55(10): 2318-2328
|
[219]
|
Zhao L L, Ma P J, Su X H, Zhang H T. A new multi-target state estimation algorithm for PHD particle filter. In: Proceedings of the 13th International Conference on Information Fusion. Edinburgh, UK: IEEE, 2010. 1-8
|
[220]
|
Ristic B, Clark D, Vo B N. Improved SMC implementation of the PHD filter. In: Proceedings of the 13th International Conference on Information Fusion. Edinburgh, UK: IEEE, 2010. 1-8
|
[221]
|
Schikora M, Koch W, Streit R, Cremers D. A sequential Monte Carlo method for multi-target tracking with the intensity filter. Advances in Intelligent Signal Processing and Data Mining: Theory and Applications. Berlin Heidelberg: Springer, 2013, 410: 55-87
|
[222]
|
Bozdogan A O, Efe M, Streit R. Reduced palm intensity for track extraction. In: Proceedings of the 16th International Conference on Information Fusion. Istanbul, Turkey: IEEE, 2013. 1243-1250
|
[223]
|
Li T, Corchado J M, Sun S. Multi-EAP: Extended EAP for Multiple Estimate Extraction for the SMC-PHD Filter. Technical report, Spain: University of Salamanca, 2014
|
[224]
|
Degen C, Govaers F, Koch W. Track maintenance using the SMC-intensity filter. In: Proceedings of the 2012 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF). Bonn, Germany: IEEE, 2012. 7-12
|
[225]
|
Lin L, Bar-shalom Y, Kirubajan T. Track labeling and PHD filter for multitarget tracking. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 778-795
|
[226]
|
Panta K, Vo B N, Singh S. Novel data association schemes for the probability hypothesis density filter. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 556-570
|
[227]
|
Danu D G, Lang T, Kirubarajan T. Assignment-based particle labeling for PHD particle filter. In: Proceedings of the SPIE 7445, Signal and Data Processing of Small Targets. San Diego, CA: SPIE, 2009.
|
[228]
|
Yang J L, Ji H B. A novel track maintenance algorithm for PHD/CPHD filter. Signal Processing, 2012, 92(10): 2371-2380
|
[229]
|
Lin L K, Xu H, An W, Sheng W D, Xu D. Tracking a large number of closely spaced objects based on the particle probability hypothesis density filter via optical sensor. Optical Engineering, 2011, 50(11): 6401
|
[230]
|
Garcia-Fernandez A F, Morelande M R, Grajal J, Bayesian sequential track formation. IEEE Transactions on Signal Processing, 2014, 62(24): 6366-6379
|
[231]
|
Li T C, Sun S D, Corchado J M, Siyau M F. A particle dyeing approach for track continuity for the SMC-PHD filter. In: Proceedings of the 2014 17th International Conference on Information Fusion. Salamanca, Spain: IEEE, 2014. 1-8
|
[232]
|
Aoki E H, Boers Y, Svensson L, Mandal P, Bagchi A. A Bayesian look at the optimal track labelling problem. In: Proceedings of the 9th IET Data Fusion Target Tracking Conference: Algorithms Applications. London: IET, 2012. 1-6
|
[233]
|
Svensson L, Morelande M. Target tracking based on estimation of sets of trajectories. In: Proceedings of the 17th International Conference on Information Fusion. Salamanca, Spain: IEEE, 2014. 1-8
|
[234]
|
Georgescu R, Willett P, Svensson L, Morelande M. Two linear complexity particle filters capable of maintaining target label probabilities for targets in close proximity. In: Proceedings of the 15th International Conference on Information Fusion. Singapore: IEEE, 2012. 2370-2377
|
[235]
|
Coraluppi S, Carthel C. Multi-stage multiple-hypothesis tracking. Journal of Advances in Information Fusion, 2011, 6(1): 57-67
|
[236]
|
Coraluppi S, Guerriero M, Willett P, Carthel C. Fuse-before-track in large sensor networks. Journal of Advances in Information Fusion, 2010, 5(1): 18-31
|
[237]
|
Li X R, Zhao Z L. Evaluation of estimation algorithms Part I: Incomprehensive measures of performance. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(4): 1340-1358
|
[238]
|
Schuhmacher D, Vo B T, Vo B N. A consistent metric for performance evaluation of multi-object filters. IEEE Transactions on Signal Processing, 2008, 56(8): 3447-3457
|
[239]
|
Ristic B, Vo B N, Clark D, Vo B T. A Metric for performance evaluation of multi-target tracking algorithms. IEEE Transactions on Signal Processing, 2011, 59(7): 3452-3457
|
[240]
|
Nagappa S, Clark D E, Mahler R. Incorporating track uncertainty into the OSPA metric. In: Proceedings of the 14th International Conference on Information Fusion. Chicago, USA: IEEE, 2011. 1-8
|
[241]
|
Vu T, Evans R. A new performance metric for multiple target tracking based on optimal subpattern assignment. In: Proceedings of the 17th International Conference on Information Fusion. Salamanca, Spain: IEEE, 2014. 1-8
|
[242]
|
Svensson L, Svensson D, Guerriero M, Willett P. Set JPDA filter for multitarget tracking. IEEE Transactions on Signal Processing, 2011, 59(10): 4677-4691
|
[243]
|
Crouse D F, Willett P, Svensson L, Svensson D, Guerriero M. The set MHT. In: Proceedings of the 14th International Conference on Information Fusion. Chicago, USA: IEEE, 2011. 1-8
|
[244]
|
Balasingam B, Baum M, Willett P. MMOSPA estimation with unknown number of objects. In: Proceedings of the 2015 IEEE China Summit and International Conference on Signal and Information Processing. Chengdu, China: IEEE, 2015. 706-710
|
[245]
|
Zhang L, Lan J, Li X R. A method for evaluating performance of joint tracking and classification. In: Proceedings of the 18th International Conference on Information Fusion. Washington, DC, USA: IEEE, 2015. 499-506
|
[246]
|
Barrios P, Naqvi G, Adams M, Leung K, Inostroza F. The cardinalized optimal linear assignment (COLA) metric for multi-object error evaluation. In: Proceedings of the 18th International Conference on Information Fusion. Washington, DC, USA: IEEE, 2015. 271-279
|