[1]
|
Mohaqeqi M, Kargahi M, Dehghan M. Adaptive scheduling of real-time systems cosupplied by renewable and nonrenewable energy sources. ACM Transactions on Embedded Computing Systems (TECS), 2013, 13(1s): Article No.36
|
[2]
|
Yao W, Jiang L, Fang J K, Wen J Y, Cheng S J. Decentralized nonlinear optimal predictive excitation control for multi-machine power systems. International Journal of Electrical Power & Energy Systems, 2014, 55: 620-627
|
[3]
|
Qi G Y, Chen Z Q, Yuan Z Z. Adaptive high order differential feedback control for affine nonlinear system. Chaos, Solitons & Fractals, 2008, 37(1): 308-315
|
[4]
|
Khan Z H, Gu I Y H. Nonlinear dynamic model for visual object tracking on Grassmann manifolds with partial occlusion handling. IEEE Transactions on Cybernetics, 2013, 43(6): 2005-2019
|
[5]
|
Ramos J I. Linearization techniques for singular initial-value problems of ordinary differential equations. Applied Mathematics and Computation, 2005, 161(2): 525-542
|
[6]
|
Odibat Ζ Μ, Momani S. Application of variational iteration method to nonlinear differential equations of fractional order. International Journal of Nonlinear Sciences and Numerical Simulation, 2006, 7(1): 27-34
|
[7]
|
Johnson C. Numerical Solution of Partial Differential Equations by the Finite Element Method. Courier Corporation, 2012.
|
[8]
|
Duan J S, Rach R, Baleanu D, Wazwaz A M. A review of the Adomian decomposition method and its applications to fractional differential equations. Communications in Fractional Calculus, 2012, 3(2): 73-99
|
[9]
|
Mall S, Chakraverty S. Numerical solution of nonlinear singular initial value problems of Emden-Fowler type using Chebyshev neural network method. Neurocomputing, 2015, 149: 975-982
|
[10]
|
Hou Zhong-Sheng, Xu Jian-Xin. On data-driven control theory: the state of the art and perspective. Acta Automatica Sinica, 2009, 35(6): 650-667(侯忠生, 许建新. 数据驱动控制理论及方法的回顾和展望. 自动化学报, 2009, 35(6): 650-667)
|
[11]
|
Suykens J A K, Vandewalle J. Least squares support vector machine classifiers. Neural Processing Letters, 1999, 9(3): 293-300
|
[12]
|
Zhang G S, Wang S W, Wang Y M, Liu W Q. LS-SVM approximate solution for affine nonlinear systems with partially unknown functions. Journal of Industrial and Management Optimization, 2014, 10(2): 621-636
|
[13]
|
Yan Wei-Wu, Chang Jun-Lin, Shao Hui-He. Least square SVM regression method based on sliding time window and its simulation. Journal of Shanghai Jiaotong University, 2004, 38(4): 524-526, 532(阎威武, 常俊林, 邵惠鹤. 基于滚动时间窗的最小二乘支持向量机回归估计方法及仿真. 上海交通大学学报, 2004, 38(4): 524-526, 532)
|
[14]
|
Zhou Xin-Ran, Teng Zhao-Sheng. An online sparse LSSVM and its application in system modeling. Journal of Hunan University (Natural Sciences), 2010, 37(4): 37-41(周欣然, 滕召胜. 一种在线稀疏LSSVM及其在系统建模中的应用. 湖南大学学报(自然科学版), 2010, 37(4): 37-41)
|
[15]
|
Cai Yan-Ning, Hu Chang-Hua. Dynamic non-bias LS-SVM learning algorithm based on Cholesky factorization. Control and Decision, 2008, 32(12): 1363-1367(蔡艳宁, 胡昌华. 一种基于Cholesky分解的动态无偏LS-SVM学习算法. 控制与决策, 2008, 32(12): 1363-1367)
|
[16]
|
Vapnik V. The Nature of Statistical Learning Theory (2nd edition). New York: Springer Science & Business Media, 2000.
|
[17]
|
Lázaro M, Santamaría I, Pérez-Cruz F, Artés-Rodríguez A. Support vector regression for the simultaneous learning of a multivariate function and its derivatives. Neurocomputing, 2005, 69(1-3): 42-61
|
[18]
|
Mehrkanoon S, Falck T, Suykens J A K. Approximate solutions to ordinary differential equations using least squares support vector machines. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(9): 1356-1367
|
[19]
|
Cawley G C, Talbot N L C. Fast exact leave-one-out cross-validation of sparse least-squares support vector machines. Neural Networks, 2004, 17(10): 1467-1475
|
[20]
|
El-Tawil M A, Bahnasawi A A, Abdel-Naby A. Solving Riccati differential equation using Adomian's decomposition method. Applied Mathematics and Computation, 2004, 157(2): 503-514
|
[21]
|
Lagaris I E, Likas A, Fotiadis D I. Artificial neural networks for solving ordinary and partial differential equations. IEEE Transactions on Neural Networks, 1998, 9(5): 987-1000
|