2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

康复机器人的同步主动交互控制与实现

彭亮 侯增广 王卫群

潘超, 刘建国, 李峻林. 昆虫视觉启发的光流复合导航方法. 自动化学报, 2015, 41(6): 1102-1112. doi: 10.16383/j.aas.2015.c120936
引用本文: 彭亮, 侯增广, 王卫群. 康复机器人的同步主动交互控制与实现. 自动化学报, 2015, 41(11): 1837-1846. doi: 10.16383/j.aas.2015.c150270
PAN Chao, LIU Jian-Guo, LI Jun-Lin. An Optical Flow-based Composite Navigation Method Inspired by Insect Vision. ACTA AUTOMATICA SINICA, 2015, 41(6): 1102-1112. doi: 10.16383/j.aas.2015.c120936
Citation: PENG Liang, HOU Zeng-Guang, WANG Wei-Qun. Synchronous Active Interaction Control and Its Implementation for a Rehabilitation Robot. ACTA AUTOMATICA SINICA, 2015, 41(11): 1837-1846. doi: 10.16383/j.aas.2015.c150270

康复机器人的同步主动交互控制与实现

doi: 10.16383/j.aas.2015.c150270
基金项目: 

国家自然科学基金(61175076,61225017,61421004)资助

详细信息
    作者简介:

    彭亮 中国科学院自动化研究所复杂系统管理与控制国家重点实验室控制科学与工程专业博士研究生.主要研究方向为机器人控制,生物信号处理.E-mail:liang.peng@ia.ac.cn

    王卫群 中国科学院自动化研究所复杂系统管理与控制国家重点实验室副研究员.主要研究方向为康复机器人,人机动力学,人-机交互控制,生物电信号处理.E-mail:weiqun.wang@ia.ac.cn

    通讯作者:

    侯增广 中国科学院自动化研究所研究员,复杂系统管理与控制国家重点实验室副主任.主要研究方向为机器人控制,智能控制理论与方法,嵌入式系统软硬件开发、医学和健康自动化领域的康复与手术机器人.本文通信作者.E-mail:zengguang.hou@ia.ac.cn

Synchronous Active Interaction Control and Its Implementation for a Rehabilitation Robot

Funds: 

Supported by National Natural Science Foundation of China (61175076, 61225017, 61421004)

  • 摘要: 提出了一种适用于康复机器人的人机交互控制方法. 结合一款具有平面并联结构的上肢康复机器人, 实现了与用户(患者)运动意图同步的、柔顺的主动康复训练. 在训练中, 利用自适应频率振荡器, 从表面肌电信号(Surface electromyography, sEMG)中获取运动模式信息, 然后结合运动模式和期望的正常运动轨迹, 生成与主动运动意图同步的参考训练轨迹. 本文通过仿真和实际实验对所提出的方法进行了验证, 振荡器可以在2~5s内快速实现与用户主动运动意图的同步, 然后利用阻抗控制器给予柔顺的辅助. 通过调节阻抗参数, 可以为患者的运动训练提供不同程度的辅助.
  • [1] Go A S, Mozaffarian D, Roger V L, Benjamin E J, Berry J D, Blaha M J, Dai S, Ford E S, Fox C S, Franco S, Fullerton H J, Gillespie C, Hailpern S M, Heit J A, Howard V J, Huffman M D, Judd S E, Kissela B M, Kittner S J, Lackland D T, Lichtman J H, Lisabeth L D, Mackey R H, Magid D J, Marcus G M, Marelli A, Matchar D B, McGuire D K, Mohler E R 3rd, Moy C S, Mussolino M E, Neumar R W, Nichol G, Pandey D K, Paynter N P, Reeves M J, Sorlie P D, Stein J, Towfighi A, Turan T N, Virani S S, Wong N D, Woo D, Turner M B; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2014 update:a report from the American heart association. Circulation, 2014, 129(3):e28-e292
    [2] [2] Maciejasz P, Eschweiler J, Gerlach-Hahn K, Jansen-Troy A, Leonhardt S. A survey on robotic devices for upper limb rehabilitation. Journal of NeuroEngineering and Rehabilitation, 2014, 11(1):3-32
    [3] Hu Jin, Hou Zeng-Guang, Chen Yi-Xiong, Zhang Feng, Wang Wei-Qun. Lower limb rehabilitation robots and interactive control methods. Acta Automatica Sinica, 2014, 40(11):2377-2390(胡进, 侯增广, 陈翼雄, 张峰, 王卫群. 下肢康复机器人及其交互控制方法. 自动化学报, 2014, 40(11):2377-2390)
    [4] [4] Buerger S P, Palazzolo J J, Krebs H I, Hogan N. Rehabilitation robotics:adapting robot behavior to suit patient needs and abilities. In:Proceedings of the 2004 American Control Conference. Boston, USA:IEEE, 2004. 3239-3244
    [5] [5] Lnenburger L, Colombo G, Riener R. Biofeedback for robotic gait rehabilitation. Journal of NeuroEngineering and Rehabilitation, 2007, 4(1):1
    [6] [6] Lo A C, Guarino P D, Richards L G, Haselkorn J K, Wittenberg G F, Federman D G, Ringer R J, Wagner T H, Krebs H I, Volpe B T, Bever C T Jr, Bravata D M, Duncan P W, Corn B H, Maffucci A D, Nadeau S E, Conroy S S, Powell J M, Huang G D, Peduzzi P. Robot-assisted therapy for long-term upper-limb impairment after stroke. New England Journal of Medicine, 2010, 362(19):1772-1783
    [7] [7] Klamroth-Marganska V, Blanco J, Campen K, Curt A, Dietz V, Ettlin T, Felder M, Fellinghauer B, Guidali M, Kollmar A, Luft A, Nef T, Schuster-Amft C, Stahel W, Riener R. Three-dimensional, task-specific robot therapy of the arm after stroke:a multicentre, parallel-group randomised trial. The Lancet Neurology, 2014, 13(2):159-166
    [8] [8] Marchal-Crespo L, Reinkensmeyer D J. Review of control strategies for robotic movement training after neurologic injury. Journal of NeuroEngineering and Rehabilitation, 2009, 6(1):20
    [9] [9] Hu J, Hou Z G, Zhang F, Chen Y X, Li P F. Training strategies for a lower limb rehabilitation robot based on impedance control. In:Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego, USA:IEEE, 2012. 6032-6035
    [10] Wang W Q, Hou Z G, Tong L, Chen Y X, Peng L, Tan M. Dynamics modeling and identification of the human-robot interface based on a lower limb rehabilitation robot. In:Proceedings of the 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China:IEEE, 2014. 6012-6017
    [11] Tong Li-Na, Hou Zeng-Guang, Peng Liang, Wang Wei-Qun, Chen Yi-Xiong, Tan Min. Multi-channel sEMG time series analysis based human motion recognition method. Acta Automatica Sinica, 2014, 40(5):810-821(佟丽娜, 侯增广, 彭亮, 王卫群, 陈翼雄, 谭民. 基于多路sEMG时序分析的人体运动模式识别方法. 自动化学报, 2014,40(5):810-821)
    [12] Zhang F, Li P F, Hou Z G, Lu Z, Chen Y X, Li Q L, Tan M. sEMG-based continuous estimation of joint angles of human legs by using BP neural network. Neurocomputing, 2012, 78(1):139-148
    [13] Artoni F, Chisari C, Menicucci D, Fanciullacci C, Micera S. REMOV:EEG artifacts removal methods during Lokomat lower-limb rehabilitation. In:Proceedings of the 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics. Roma, Italy:IEEE, 2012. 992-997
    [14] Cai L L, Fong A J, Liang Y, Burdick J, Edgerton V R. Assist-as-needed training paradigms for robotic rehabilitation of spinal cord injuries. In:Proceedings of the 2006 IEEE International Conference on Robotics and Automation. Orlando, USA:IEEE, 2006. 3504-3511
    [15] Krebs H I, Palazzolo J J, Dipietro L, Ferraro M, Krol J, Rannekleiv K, Volpe B T, Hogan N. Rehabilitation robotics:Performance-based progressive robot-assisted therapy. Autonomous Robots, 2003, 15(1):7-20
    [16] Riener R, Nef T, Colombo G. Robot-aided neurorehabilitation of the upper extremities. Medical and Biological Engineering and Computing, 2005, 43(1):2-10
    [17] Peng L, Hou Z G, Peng L, Wang W Q. Design of CASIAARM:a novel rehabilitation robot for upper limbs. In:Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany:IEEE, 2015. 5611-5616
    [18] Li L, Baum B S. Electromechanical delay estimated by using electromyography during cycling at different pedaling frequencies. Journal of Electromyography and Kinesiology, 2004, 14(6):647-652
    [19] Cifrek M, Medved V, Tonković S, Ostojić S. Surface EMG based muscle fatigue evaluation in biomechanics. Clinical Biomechanics, 2009, 24(4):327-340
    [20] Winslow J, Martinez A, Thomas C K. Automatic identification and classification of muscle spasms in long-term EMG recordings. IEEE Journal of Biomedical and Health Informatics, 2015, 19(2):464-470
    [21] Ajallooeian M, van den Kieboom J, Mukovskiy A, Giese M A, Ijspeert A J. A general family of morphed nonlinear phase oscillators with arbitrary limit cycle shape. Physica D:Nonlinear Phenomena, 2013, 263:41-56
    [22] Yu J Z, Tan M, Chen J, Zhang J W. A survey on CPG-inspired control models and system implementation. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(3):441-456
    [23] Righetti L, Buchli J, Ijspeert A J. Dynamic Hebbian learning in adaptive frequency oscillators. Physica D:Nonlinear Phenomena, 2006, 216(2):269-281
    [24] Righetti L, Ijspeert A J. Programmable central pattern generators:an application to biped locomotion control. In:Proceedings of the 2006 IEEE International Conference on Robotics and Automation. Orlando, USA:IEEE, 2006. 1585-1590
    [25] Hogan N. Impedance control:an approach to manipulation. In:Proceedings of the 1984 American Control Conference. San Diego, USA:IEEE, 1984. 304-313
    [26] Yu H N. Modeling and control of hybrid machine systems:a five-bar mechanism case. International Journal of Automation and Computing, 2006, 3(3):235-243
    [27] Peng L, Hou Z G, Wang W Q. Dynamic modeling and control of a parallel upper-limb rehabilitation robot. In:Proceedings of the 2015 IEEE/RAS-EMBS International Conference on Rehabilitation Robotics. Singapore, 2015. 532-537
    [28] Winter D A. Biomechanics and Motor Control of Human Movement (4th Edition). United Kingdom:John Wiley Sons Ltd, 2009.
    [29] Hogan N. An organizing principle for a class of voluntary movements. The Journal of Neuroscience, 1984, 4(11):2745-2754
  • 期刊类型引用(15)

    1. 耿艳利,刘松岳,王希瑞,宣伯凯. 电动下肢假肢多路况控制策略研究. 中国康复医学杂志. 2024(02): 226-231 . 百度学术
    2. 汪晓铭,黎林荣,陈长龙,孙洁,张哲文,孟巧玲,喻洪流. 人-机-环境共融的智能假肢膝关节研究进展. 中国生物医学工程学报. 2023(04): 486-501 . 百度学术
    3. 韩亚丽,韩子,金壮壮,徐闽海,吴应达. 一种主动型踝关节助力外骨骼设计及性能实验. 仪器仪表学报. 2023(11): 109-118 . 百度学术
    4. 刘克平,滕召纬,孙中波,李婉婷. 基于自适应模糊神经网络的下肢关节角度估计. 计算机仿真. 2022(09): 456-461 . 百度学术
    5. 盛敏,唐少波. 融合统计和几何特征的运动意图识别方法. 安庆师范大学学报(自然科学版). 2021(01): 34-39 . 百度学术
    6. 刘作军,许长寿,陈玲玲,张燕. 智能假肢膝关节的研发要点及其研究进展综述. 包装工程. 2021(10): 54-63 . 百度学术
    7. 崔建伟,李志钢,曹尔凡,杜韩,陆普东. 基于人体上肢运动信息的助残手抓取意图识别方法. 中国惯性技术学报. 2021(02): 250-255 . 百度学术
    8. 刘磊,杨鹏,刘作军,宋寅卯. 基于多核学习极限学习机的助行机器人运动相容性识别. 高技术通讯. 2021(09): 978-985 . 百度学术
    9. 苏本跃,倪钰,盛敏,赵丽丽. 基于改进卷积神经网络的动力下肢假肢运动意图识别. 控制与决策. 2021(12): 3031-3038 . 百度学术
    10. 黄品高,黄剑平,黄博俊,方鹏,刘志远,李光林. 实现下肢假肢智能仿生控制的神经功能重建及行走意图识别方法. 中国科学基金. 2021(S1): 227-235 . 百度学术
    11. 滕召纬,孙中波,刘克平. 基于自适应模糊神经网络的下肢关节运动意图估计. 长春工业大学学报. 2020(06): 558-562 . 百度学术
    12. 盛敏,刘双庆,王婕,苏本跃. 基于GMM-HMM模型的智能下肢假肢运动意图识别. 仪器仪表学报. 2019(05): 169-178 . 百度学术
    13. 刘双庆. 基于LSTM深度学习模型的智能下肢假肢运动意图识别. 合肥学院学报(综合版). 2019(05): 96-104 . 百度学术
    14. 杨帆,王远,郭鹏程. 针对下肢残障人士的无障碍卫浴产品设计分析. 工业设计. 2019(11): 48-49 . 百度学术
    15. 刘磊,陈增强,杨鹏,刘作军. 采用鱼群算法进化极限学习机的假肢步态识别. 振动.测试与诊断. 2019(06): 1225-1231+1360-1361 . 百度学术

    其他类型引用(22)

  • 加载中
计量
  • 文章访问数:  2604
  • HTML全文浏览量:  129
  • PDF下载量:  1955
  • 被引次数: 37
出版历程
  • 收稿日期:  2015-05-04
  • 修回日期:  2015-08-07
  • 刊出日期:  2015-11-20

目录

    /

    返回文章
    返回