2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分数阶矩的仿射不变特征提取

杨建伟 李沛遥

曲寒冰, 陈曦, 王松涛, 于明. 基于变分贝叶斯逼近的前向仿射变换点集匹配方法研究. 自动化学报, 2015, 41(8): 1482-1494. doi: 10.16383/j.aas.2015.e130204
引用本文: 杨建伟, 李沛遥. 基于分数阶矩的仿射不变特征提取. 自动化学报, 2015, 41(12): 2147-2154. doi: 10.16383/j.aas.2015.c150264
QU Han-Bing, CHEN Xi, WANG Song-Tao, YU Ming. Forward Affine Point Set Matching Under Variational Bayesian Framework. ACTA AUTOMATICA SINICA, 2015, 41(8): 1482-1494. doi: 10.16383/j.aas.2015.e130204
Citation: YANG Jian-Wei, LI Pei-Yao. Affine Invariant Feature Extraction Based on Fractional Order Moment. ACTA AUTOMATICA SINICA, 2015, 41(12): 2147-2154. doi: 10.16383/j.aas.2015.c150264

基于分数阶矩的仿射不变特征提取

doi: 10.16383/j.aas.2015.c150264
基金项目: 

国家自然科学基金(61572015,41375115,11301276)资助

详细信息
    作者简介:

    李沛遥南京信息工程大学数学与统计学院硕士研究生. 主要研究方向为模式识别. E-mail: lpy789@163.com

    通讯作者:

    杨建伟南京信息工程大学数学与统计学院教授.2003 年获西安交通大学理学博士学位.主要研究方向为模式识别及数值分析.本文通信作者.

Affine Invariant Feature Extraction Based on Fractional Order Moment

Funds: 

Supported by National Natural Science Foundation of China (61572015, 41375115, 11301276)

  • 摘要: 仿射不变的特征提取在目标识别和配准中起关键作用, 图像矩是提取仿射不变特征的重要方法, 高阶矩对噪声较敏感, 实际中仅有几个由整数阶矩构造的仿射不变量可用. 本文引入分数阶矩, 它由变形累次积分定义, 不仅充分利用仿射变换映直线为直线这一特性,而且能方便地消除仿射变换前后极角因子的影响. 利用分数阶矩给出了仿射不变量的构造, 传统矩构造的不变量仅是这种构造的特例. 实验结果表明低次矩构造的不变量一般有较好的抗噪性能.
  • [1] Flusser J, Suk T, Zitova B. Moments and Moment Invariants in Pattern Recognition. Oxford: John Wiley and Sons, 2009.
    [2] Song X H, Muselet D, Trémeau A. Affine transforms between image space and color space for invariant local descriptors. Pattern Recognition, 2013, 46(8): 2376-2389
    [3] Li H H, Jin X, Yang N, Yang Z. The recognition of landed aircrafts based on PCNN model and affine moment invariants. Pattern Recognition Letters, 2015, 51: 23-29
    [4] Chen Wei, Zhang Xiao-Ting. Orthogonal rotation-invariant V moments and application to image reconstruction. Acta Automatica Sinica, 2015, 41(2): 376-385(陈伟, 张晓婷. 正交旋转不变V矩及其在图像重建中的应用. 自动化学报, 2015, 41(2): 376-385)
    [5] Liu Jia-Min, Xie Hai-Jun, Liu Qiang, Zhu Sheng-Jun, Zhang Wei. A fast non-destructive algorithm for image description based on improved wavelet moment features. Acta Automatica Sinica, 2009, 35(10): 1278-1282(刘嘉敏, 谢海军, 刘强, 朱晟君, 张威. 基于改进小波矩特征的快速无损图像描述算法. 自动化学报, 2009, 35(10): 1278-1282)
    [6] Flusser J, Suk T. Pattern recognition by affine moment invariants. Pattern Recognition, 1993, 26(1): 167-174
    [7] Gong M, Li H, Cao W G. Moment invariants to affine transformation of colours. Pattern Recognition Letters, 2013, 34(11): 1240-1251
    [8] Suk T, Flusser J. Affine moment invariants generated by graph method. Pattern Recognition, 2011, 44(9): 20472056
    [9] Yang Z W, Cohen F S. Cross-weighted moments and affine invariants for image registration and matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(8): 804-814
    [10] Rahtu E, Salo M, Heikkila J. Affine invariant pattern recognition using multiscale autoconvolution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6): 908-918
    [11] Li Xin-De, Yang Wei-Dong, Dezert J. An airplane image target's multi-feature fusion recognition method. Acta Automatica Sinica, 2012, 38(8): 1298-1307(李新德, 杨伟东, Dezert J. 一种飞机图像目标多特征信息融合识别方法. 自动化学报, 2012, 38(8): 1298-1307)
    [12] Teh C H, Chin R T. On image analysis by the methods of moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(4): 496-513
    [13] Zhu X M, Zhu W P, Champagne B. Spectrum sensing based on fractional lower order moments for cognitive radios in α-stable distributed noise. Signal Processing, 2015, 111: 94105
    [14] Gruber M, Hsu K Y. Moment-based image normalization with high noise-tolerance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(2): 136-139
  • 期刊类型引用(16)

    1. 马亚杰,管理,姜斌,陈丽君,黄斌达,黄玉莹. 基于改进量子粒子群算法的柔性车间调度与预测性维护协同优化管控方法. 中国科学:技术科学. 2025(02): 295-308 . 百度学术
    2. 马亚杰,姜斌,管理,陈丽君,黄斌达,陈智. 柔性车间多目标动态调度方法及其在航空制造中的应用综述(英文). Transactions of Nanjing University of Aeronautics and Astronautics. 2025(01): 1-24 . 百度学术
    3. 温廷新,关婷誉. 考虑能耗和运输的有限缓冲区混合流水车间调度. 系统仿真学报. 2024(06): 1344-1358 . 百度学术
    4. 刘璐,宋海草,姜天华,邓冠龙,巩庆涛. 基于改进生物迁徙算法的双资源柔性作业车间节能调度问题. 计算机集成制造系统. 2024(09): 3125-3141 . 百度学术
    5. 赵慧娟,范明霞,姜盼松,温禄兴. 时间-能耗-质量权衡优化的柔性作业车间多目标调度研究. 计算机应用与软件. 2023(05): 67-75 . 百度学术
    6. 李瑞,龚文引. 改进的基于分解的多目标进化算法求解双目标模糊柔性作业车间调度问题. 控制理论与应用. 2022(01): 31-40 . 百度学术
    7. 彭来湖,王伟华,万昌江,万璐璐. 基于遗传模拟退火算法的柔性流水车间调度节能优化. 软件工程. 2022(11): 49-55 . 百度学术
    8. 李新玲,张天昊. 基于精益生产节拍化的智能排程系统设计. 中国设备工程. 2022(24): 33-35 . 百度学术
    9. 李俊青,杜宇,田杰,段培永,潘全科. 带运输资源约束柔性作业车间调度问题的人工蜂群算法. 电子学报. 2021(02): 324-330 . 百度学术
    10. 蔡敏,王艳,纪志成. 基于多策略融合量子粒子群算法的MOFFJSP研究. 系统仿真学报. 2021(11): 2615-2626 . 百度学术
    11. 李明,雷德明. 基于新型帝国竞争算法的高维多目标柔性作业车间调度. 控制理论与应用. 2019(06): 893-901 . 百度学术
    12. 雷德明,操三强,李明. 求解约束优化问题的新型帝国竞争算法. 控制与决策. 2019(08): 1663-1671 . 百度学术
    13. 张清勇,王皓冉,雷德明. 求解分布式并行机调度的新型帝国竞争算法. 华中科技大学学报(自然科学版). 2019(08): 86-91 . 百度学术
    14. 操三强,雷德明. 一种新型约束多目标帝国竞争算法. 信息与控制. 2019(04): 437-444+451 . 百度学术
    15. 杨冬婧,雷德明. 新型蛙跳算法求解总能耗约束FJSP. 中国机械工程. 2018(22): 2682-2689 . 百度学术
    16. 王艳红,于宁,蔡明,邢大伟. 动态制造系统生产计划与调度协同优化. 中国机械工程. 2018(22): 2767-2771 . 百度学术

    其他类型引用(40)

  • 加载中
计量
  • 文章访问数:  1783
  • HTML全文浏览量:  43
  • PDF下载量:  1271
  • 被引次数: 56
出版历程
  • 收稿日期:  2015-05-04
  • 修回日期:  2015-09-06
  • 刊出日期:  2015-12-20

目录

    /

    返回文章
    返回