2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

区间多目标优化中决策空间约束、支配及同序解筛选策略

陈志旺 白锌 杨七 黄兴旺 李国强

陈志旺, 白锌, 杨七, 黄兴旺, 李国强. 区间多目标优化中决策空间约束、支配及同序解筛选策略. 自动化学报, 2015, 41(12): 2115-2124. doi: 10.16383/j.aas.2015.c150218
引用本文: 陈志旺, 白锌, 杨七, 黄兴旺, 李国强. 区间多目标优化中决策空间约束、支配及同序解筛选策略. 自动化学报, 2015, 41(12): 2115-2124. doi: 10.16383/j.aas.2015.c150218
CHEN Zhi-Wang, BAI Xin, YANG Qi, HUANG Xing-Wang, LI Guo-Qiang. Strategy of Constraint, Dominance and Screening Solutions with Same Sequence in Decision Space for Interval Multi-objective Optimization. ACTA AUTOMATICA SINICA, 2015, 41(12): 2115-2124. doi: 10.16383/j.aas.2015.c150218
Citation: CHEN Zhi-Wang, BAI Xin, YANG Qi, HUANG Xing-Wang, LI Guo-Qiang. Strategy of Constraint, Dominance and Screening Solutions with Same Sequence in Decision Space for Interval Multi-objective Optimization. ACTA AUTOMATICA SINICA, 2015, 41(12): 2115-2124. doi: 10.16383/j.aas.2015.c150218

区间多目标优化中决策空间约束、支配及同序解筛选策略

doi: 10.16383/j.aas.2015.c150218
基金项目: 

国家自然科学基金(61403331),河北省自然科学基金青年基金(F2014203099),燕山大学青年教师自主研究计划课题(13LGA006)资助

详细信息
    作者简介:

    陈志旺燕山大学电气工程学院副教授.主要研究方向为多目标优化和多属性决策. E-mail: czwaaron@ysu.edu.cn

    通讯作者:

    白锌燕山大学电气工程学院硕士研究生.主要研究方向为多目标优化.本文通信作者.

Strategy of Constraint, Dominance and Screening Solutions with Same Sequence in Decision Space for Interval Multi-objective Optimization

Funds: 

Supported by National Natural Science Foundation of China (61403331), Natural Science Foundation for Young Scientist of Hebei Province (F2014203099), and Independent Research Program for Young Teachers of Yanshan University (13LGA006)

  • 摘要: 针对优化函数未知的昂贵区间多目标优化, 根据决策空间数据挖掘, 提出了一种基于最近邻法和主成分分析法(Principal component analysis, PCA)的NSGA-II算法. 该算法首先通过约束条件将待测解集分为可行解和非可行解, 利用最近邻法对待测解和样本解进行相似性计算, 判断待测解是否满足约束. 然后对于两个解的Pareto支配性同样利用最近邻法来区分解之间的被支配和非被支配关系. 由于目标空间拥挤距离无法求出, 为此在决策空间利用主成分分析法将K-均值聚类后的解集降维, 找出待测解的前、后近距离解, 通过决策空间拥挤距离对同序值解进行筛选. 实现NSGA-II算法的改进.
  • [1] Sadollah A, Eskandar H, Kim J H. Water cycle algorithm for solving constrained multi-objective optimization problems. Applied Soft Computing, 2015, 27: 279-298
    [2] Zuo Xing-Quan, Wang Chun-Lu, Zhao Xin-Chao. Combining multi-objective immune algorithm and linear programming for double row layout problem. Acta Automatica Sinica, 2015, 41(3): 528-540(左兴权, 王春露, 赵新超. 一种结合多目标免疫算法和线性规划的双行设备布局方法. 自动化学报, 2015, 41(3): 528-540)
    [3] Zhong Yun-Feng. Multi-objective Optimizated Applications in the Safety Design of Vehicle Collision [Master dissertation], Hunan University, China, 2013.(钟云锋. 多目标优化在汽车碰撞安全性设计中的应用[硕士学位论文], 湖南大学, 中国, 2013.)
    [4] Jin Y C, Sendhoff B. A systems approach to evolutionary multiobjective structural optimization and beyond. IEEE Computational Intelligence Magazine, 2009, 4(3): 62-76
    [5] Douguet D. e-LEA3D: a computational-aided drug design web server. Nucleic Acids Research, 2010, 38(Suppl 2): W615-W621
    [6] Gong D W, Ji X F, Sun J, Sun X Y. Interactive evolutionary algorithms with decision-maker's preferences for solving interval multi-objective optimization problems. Neurocomputing, 2014, 137: 241-251
    [7] Li Fang-Yi, Li Guang-Yao, Zheng Gang. Uncertain multi-objective optimization method based on interval. Chinese Journal of Solid Mechanics, 2010, 31(1): 86-93(李方义, 李光耀, 郑刚. 基于区间的不确定多目标优化方法研究. 固体力学学报, 2010, 31(1): 86-93)
    [8] Sun Jing. Genetic Algorithms for Solving Multi-objective Optimization Problems with Interval Parameters [Ph.D. dissertation], University of Mining and Technology, China, 2012.(孙靖. 用于区间参数多目标优化问题的遗传算法[博士学位论文]. 中国矿业大学, 中国, 2012.)
    [9] Chen Zhi-Wang, Chen Lin. Improved NSGA-II for constrained multi-objective optimization problems with interval numbers. Journal of Chinese Computer Systems, 2014, 35(11): 2502-2506(陈志旺, 陈林. 求解约束多目标区间优化问题的改进NSGA-II. 小型微型计算机系统, 2014, 35(11): 2502-2506)
    [10] Zhang L C. A framework to model big data driven complex cyber physical control systems. In: Proceedings of the 20th International Conference on Automation and Computing (ICAC). Cranfield, UK: IEEE, 2014. 283-288
    [11] Gambi A, Hummer W, Dustdar S. Testing elastic systems with surrogate models. In: Proceedings of the 1st International Workshop on Combining Modelling and Search-Based Software Engineering (CMSBSE). San Francisco, USA: IEEE, 2013. 8-11
    [12] Ho T Q, Ogawa H, Bil C. Investigation on effective sampling strategy for multi-objective design optimization of RBCC propulsion systems via surrogate-assisted evolutionary algorithms. Procedia Engineering, 2015, 99: 1252-1262
    [13] Zhang Q F, Liu W D, Tsang E, Virginas B. Expensive multiobjective optimization by MOEA/D with Gaussian process model. IEEE Transactions on Evolutionary Computation, 2010, 14(3): 456-474
    [14] Goel T, Vaidyanathan R, Haftka R T, Shyy W, Queipo N V, Tucker K. Response surface approximation of Pareto optimal front in multi-objective optimization. Computer Methods in Applied Mechanics and Engineering, 2007, 196(4-6): 879-893
    [15] Zhou Z Z, Ong Y S, Nair P B, Keane A J, Lum K Y. Combining global and local surrogate models to accelerate evolutionary optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2007, 37(1): 66-76
    [16] Li S Z, Liu X J, Yuan G. Supervisory predictive control of weighted least square support vector machine based on Cauchy distribution. In: Proceedings of the 26th Chinese Control and Decision Conference (2014 CCDC). Changsha, China: IEEE, 2014. 3523-3526
    [17] Mlakar M, Petelin D, Tuşar T, Filipiç B. GP-DEMO: differential evolution for multiobjective optimization based on Gaussian process models. European Journal of Operational Research, 2015, 243(2): 347-361
    [18] Guo Guan-Qi, Yin Cheng, Zeng Wen-Jing, Li Wu, Yan Tai-Shan. Prediction of Pareto dominance by cross similarity of equivalent components. Acta Automatica Sinica, 2014, 40(1): 33-40(郭观七, 尹呈, 曾文静, 李武, 严太山. 基于等价分量交叉相似性的Pareto支配性预测. 自动化学报, 2014, 40(1): 33-40)
    [19] Zhang Q F, Zhou A M, Jin Y C. RM-MEDA: a regularity model-based multiobjective estimation of distribution algorithm. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 41-63
    [20] Zhou A M, Jin Y C, Zhang Q F, Sendhoff B, Tsang E. Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: Proceedings of the 2006 IEEE Congress on Evolutionary Computation (CEC). Vancouver, BC: IEEE, 2006. 892-899
    [21] Chen X M, Zhang C Y, Zhou Z X. Improve recognition performance by hybridizing principal component analysis (PCA) and elastic bunch graph matching (EBGM). In: Proceedings of the 2014 IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP). Orlando, FL: IEEE, 2014. 1-5
    [22] Jiang Chao. Theories and Algorithms of Uncertain Optimization Based on Interval [Ph.D. dissertation], Hunan University, China, 2008.(姜潮. 基于区间的不确定性优化理论与算法[博士学位论文], 湖南大学, 中国, 2008.)
    [23] Zhang Xiao-Hui, Dai Guan-Zhong, Xu Nai-Ping. Study on diversity of population in genetic algorithms. Control Theory and Application, 1998, 15(1): 17-23 (张晓缋, 戴冠中, 徐乃平. 遗传算法种群多样性的分析研究. 控制理论与应用, 1998, 15(1): 17-23)
    [24] Zhang Yong, Gong Dun-Wei, Hao Guo-Sheng, Jiang Yu-Qing. Particle swarm optimization for multi-objective systems with interval parameters. Acta Automatica Sinica, 2008, 34(8): 921-928 (张勇, 巩敦卫, 郝国生, 蒋余庆. 含区间参数多目标系统的微粒群优化算法. 自动化学报, 2008, 34(8): 921-928)
  • 加载中
计量
  • 文章访问数:  2090
  • HTML全文浏览量:  133
  • PDF下载量:  1062
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-20
  • 修回日期:  2015-09-23
  • 刊出日期:  2015-12-20

目录

    /

    返回文章
    返回