[1]
|
Loan M, Newman O M G, Cooper R M G, Farrow J B, Parkinson G M. Defining the Paragoethite process for iron removal in zinc hydrometallurgy. Hydrometallurgy, 2006, 81(2): 104-129
|
[2]
|
Ismael M R C, Carvalho J M R. Iron recovery from sulphate leach liquors in zinc hydrometallurgy. Minerals Engineering, 2003, 16(1): 31-39
|
[3]
|
Chang Y F, Zhai X J, Li B C, Fu Y. Removal of iron from acidic leach liquor of lateritic nickel ore by goethite precipitate. Hydrometallurgy, 2010, 101(1-2): 84-87
|
[4]
|
Gui Wei-Hua, Yang Chun-Hua, Chen Xiao-Fang, Wang Ya-Lin. Modeling and optimization problems and challenges arising in nonferrous metallurgical process. Acta Automatica Sinica, 2013, 39(3): 197-207(桂卫华, 阳春华, 陈晓方, 王雅琳. 有色冶金过程建模与优化的若干问题及挑战. 自动化学报, 2013, 39(3): 197-207)
|
[5]
|
Gui Wei-Hua, Yang Chun-Hua, Li Yong-Gang, He Jian-Jun, Yin Lin-Zi. Data-driven operational-pattern optimization for copper flash smelting process. Acta Automatica Sinica, 2009, 35(6): 717-724(桂卫华, 阳春华, 李勇刚, 贺建军, 尹林子. 基于数据驱动的铜闪速熔炼过程操作模式优化及应用. 自动化学报, 2009, 35(6): 717-724)
|
[6]
|
Chai Tian-You, Ding Jin-Liang, Wang Hong, Su Chun-Yi. Hybrid intelligent optimal control method for operation of complex industrial processes. Acta Automatica Sinica, 2008, 34(5): 505-515(柴天佑, 丁进良, 王宏, 苏春翌. 复杂工业过程运行的混合智能优化控制方法. 自动化学报, 2008, 34(5): 505-515)
|
[7]
|
Ma Tian-Yu, Gui Wei-Hua. Optimal control for continuous bauxite grinding process in ball-mill. Control Theory & Applications, 2012, 29(10): 1339-1347(马天雨, 桂卫华. 铝土矿连续磨矿过程球磨机优化控制. 控制理论与应用, 2012, 29(10): 1339-1347)
|
[8]
|
Ye J X, Xu H L, Feng E M, Xiu Z L. Optimization of a fed-batch bioreactor for 1, 3-propanediol production using hybrid nonlinear optimal control. Journal of Process Control, 2014, 24(10): 1556-1569
|
[9]
|
Zhou P, Chai T Y, Wang H. Intelligent optimal-setting control for grinding circuits of mineral processing process. IEEE Transactions on Automation Science and Engineering, 2009, 6(4): 730-743
|
[10]
|
Zhou P, Chai T Y, Sun J. Intelligence-based supervisory control for optimal operation of a DCS-controlled grinding system. IEEE Transactions on Control Systems Technology, 2013, 21(1): 162-175
|
[11]
|
Li Y G, Gui W H, Teo K L, Zhu H Q, Chai Q Q. Optimal control for zinc solution purification based on interacting CSTR models. Journal of Process Control, 2012, 22(10): 1878-1889
|
[12]
|
Yang C H, Gui W H, Kong L S, Wang Y L. Modeling and optimal-setting control of blending process in a metallurgical industry. Computers & Chemical Engineering, 2009, 33(7): 1289-1297
|
[13]
|
Sun B, Gui W H, Wang Y L, Yang C H. Intelligent optimal setting control of a cobalt removal process. Journal of Process Control, 2014, 24(5): 586-599
|
[14]
|
Chai T Y, Ding J L, Wu F H. Hybrid intelligent control for optimal operation of shaft furnace roasting process. Control Engineering Practice, 2011, 19(3): 264-275
|
[15]
|
Loxton R, Lin Q, Teo K L. Minimizing control variation in nonlinear optimal control. Automatica, 2013, 49(9): 2652-2664
|
[16]
|
Xie Y F, Xie S W, Chen X F, Gui W H, Yang C H, Caccetta L. An integrated predictive model with an on-line updating strategy for iron precipitation in zinc hydrometallurgy. Hydrometallurgy, 2015, 151(1): 62-72
|
[17]
|
Marsalek R. The reduction of zinc using goethite process and adsorption of Pb+II, Cu+II and Cr+III on selected precipitate. International Journal of Environmental Science and Development, 2011, 2(4): 253-258
|
[18]
|
Xie Shi-Wen, Xie Yong-Fang, Yang Chun-Hua, Jiang Zhao-Hui, Gui Wei-Hua. A ferrous iron concentration prediction model for the process of iron precipitation by goethite. Acta Automatica Sinica, 2014, 40(5): 830-837(谢世文, 谢永芳, 阳春华, 蒋朝辉, 桂卫华. 针铁矿法沉铁过程亚铁离子浓度预测. 自动化学报, 2014, 40(5): 830-837)
|
[19]
|
Stumm W, Lee G G. Oxygenation of ferrous iorn. Industry & Engineering Chemistry, 1961, 53(2): 143-146
|
[20]
|
Seetharaman S. Treatise on Process Metallurgy, Volume 1: Process Fundamentals. Netherlands: Elsevier, 2014. 831-852
|
[21]
|
Tsoulos I G, Stavrakoudis A. On locating all roots of systems of nonlinear equations inside bounded domain using global optimization methods. Nonlinear Analysis: Real World Applications, 2010, 11(4): 2465-2471
|
[22]
|
Pontryagin L S. Mathematical Theory of Optimal Processes. New York: Gordon and Breach Science Publishers, 1986.
|
[23]
|
Luus R. Optimal control by dynamic programming using systematic reduction in grid size. International Journal of Control, 1990, 51(5): 995-1013
|
[24]
|
Teo K L, Goh C J, Wong K H. A unified computational approach to optimal control problems. New York: Longman Scientific and Technical, 1991.
|
[25]
|
Goh C J, Teo K L. Control parametrization: a unified approach to optimal control problems with general constraints. Automatica, 1988, 24(1): 3-18
|
[26]
|
Teo K L, Rehbock V, Jennings L S. A New computational algorithm for functional inequality constrained optimization problems. Automatica, 1993, 29(3): 789-792
|
[27]
|
Zhou X J, Yang C H, Gui W H. State transition algorithm. Journal of Industrial and Management Optimization, 2012, 8(4): 1039-1056
|
[28]
|
Zhou X J, Yang C H, Gui W H. Nonlinear system identification and control using state transition algorithm. Applied Mathematics and Computation, 2014, 226: 169-179
|