2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种实现风力机MPPT控制的加速最优转矩法

陈载宇 殷明慧 蔡晨晓 张保勇 邹云

陈载宇, 殷明慧, 蔡晨晓, 张保勇, 邹云. 一种实现风力机MPPT控制的加速最优转矩法. 自动化学报, 2015, 41(12): 2047-2057. doi: 10.16383/j.aas.2015.c150184
引用本文: 陈载宇, 殷明慧, 蔡晨晓, 张保勇, 邹云. 一种实现风力机MPPT控制的加速最优转矩法. 自动化学报, 2015, 41(12): 2047-2057. doi: 10.16383/j.aas.2015.c150184
CHEN Zai-Yu, YIN Ming-Hui, CAI Chen-Xiao, ZHANG Bao-Yong, ZOU Yun. An Accelerated Optimal Torque Control of Wind Turbines for Maximum Power Point Tracking. ACTA AUTOMATICA SINICA, 2015, 41(12): 2047-2057. doi: 10.16383/j.aas.2015.c150184
Citation: CHEN Zai-Yu, YIN Ming-Hui, CAI Chen-Xiao, ZHANG Bao-Yong, ZOU Yun. An Accelerated Optimal Torque Control of Wind Turbines for Maximum Power Point Tracking. ACTA AUTOMATICA SINICA, 2015, 41(12): 2047-2057. doi: 10.16383/j.aas.2015.c150184

一种实现风力机MPPT控制的加速最优转矩法

doi: 10.16383/j.aas.2015.c150184
基金项目: 

国家自然科学基金(61174038,61203129,61473151),中央高校基本科研业务费专项资金(30915011104,30920140112005),中国博士后科学基金资助项目(2013M541674)资助

详细信息
    作者简介:

    陈载宇南京理工大学自动化学院博士研究生. 2012 年获得南京理工大学理学院学士学位. 主要研究方向为风力机的MPPT 控制.E-mail: ChenZaiyu1989@gmail.com

    通讯作者:

    殷明慧南京理工大学自动化学院副教授, 高级工程师.2009 年获得南京理工大学工学博士学位.主要研究方向为电力系统稳定性, 风力发电, 风力机设计.本文通信作者.

An Accelerated Optimal Torque Control of Wind Turbines for Maximum Power Point Tracking

Funds: 

Supported by National Natural Science Foundation of China (61174038, 61203129, 61473151), the Fundamental Research Funds for the Central Universities (30915011104, 30920140112005), and China Postdoctoral Science Foundation (2013M541674)

  • 摘要: 最优转矩法因其所需测量状态较少、易于实现的特点,被广泛应用于风力机的最大功率点跟踪(Maximum power point tracking, MPPT)控制. 传统的最优转矩法只考虑系统的稳态工作点,依靠系统本身的特性进行转速调节,在一定程度上限制了转速调节速度. 本文使用滑模变结构控制的思想,在最优转矩法的基础上设计得到 一种变结构控制器,增大了转速跟踪过程中的不平衡转矩,缩短了系统的调节时间. 仿真结果表明本文提出的改进方法可以获得良好的转速跟踪效果,从而提高风力机的风能捕获效率.
  • [1] Huang C, Li F X, Jin Z Q. Maximum power point tracking strategy for large-scale wind generation systems considering wind turbine dynamics. IEEE Transactions on Industrial Electronics, 2015, 62(4): 2530-2539
    [2] Boukhezzar B, Siguerdidjane H. Comparison between linear and nonlinear control strategies for variable speed wind turbines. Control Engineering Practice, 2010, 18(12): 1357-1368
    [3] Nasiri M, Milimonfared J, Fathi S H. Modeling, analysis and comparison of TSR and OTC methods for MPPT and power smoothing in permanent magnet synchronous generator-based wind turbines. Energy Conversion and Management, 2014, 86: 892-900
    [4] Xie S R, Li M, Li H Y, Luo J, Zhao C Y. Maximum power point tracking control strategy for variable speed wind turbine generation system. In: Proceedings of the 2014 International Conference on Information Science, Electronics and Electrical Engineering (ISEEE). Sapporo, Hokkaido, Japan: IEEE, 2014, 2: 1317-1324
    [5] Liu J Z, Meng H M, Hu Y, Lin Z W, Wang W. A novel MPPT method for enhancing energy conversion efficiency taking power smoothing into account. Energy Conversion and Management, 2015, 101: 738-748
    [6] Zhang Xiao-Lian, Yin Ming-Hui, Zhou Lian-Jun, Zou Yun, Chen Zhi-Qiang. Analysis on factors affecting performance of MPPT control. Automation of Electric Power Systems, 2013, 37(22): 15-21(张小莲, 殷明慧, 周连俊, 邹云, 陈志强. 风电机组最大功率点跟踪控制的影响因素分析. 电力系统自动化, 2013, 37(22): 15-21)
    [7] Jena D, Rajendran S. A review of estimation of effective wind speed based control of wind turbines. Renewable and Sustainable Energy Reviews, 2015, 43: 1046-1062
    [8] Mérida J, Aguilar L T, Dávila J. Analysis and synthesis of sliding mode control for large scale variable speed wind turbine for power optimization. Renewable Energy, 2014, 71: 715-728
    [9] Boukhezzar B, Siguerdidjane H. Nonlinear control of a variable-speed wind turbine using a two-mass model. IEEE Transactions on Energy Conversion, 2011, 26(1): 149-162
    [10] Zhao H R, Wu Q W, Rasmussen C N, Blanke M. L1 adaptive speed control of a small wind energy conversion system for maximum power point tracking. IEEE Transactions on Energy Conversion, 2014, 29(3): 576-584
    [11] Johnson K E, Fingersh L J, Balas M J, Pao L Y. Methods for increasing region 2 power capture on a variable-speed wind turbine. Journal of Solar Energy Engineering, 2004, 126(4): 1092-1100
    [12] Johnson K E, Pao L Y, Balas M J, Fingersh L J. Control of variable-speed wind turbines: standard and adaptive techniques for maximizing energy capture. IEEE Control Systems, 2006, 26(3): 70-81
    [13] Johnson K E. Adaptive Torque Control of Variable Speed Wind Turbines, Technical Report NREL/TP-500-36265, National Renewable Energy Laboratory, USA, 2004
    [14] Yin Ming-Hui, Zhang Xiao-Lian, Ye Xing, Zou Yun. Improved MPPT control based on the reduction of tracking range. Proceedings of the CSEE, 2012, 32(27): 24-31(殷明慧, 张小莲, 叶星, 邹云. 一种基于收缩跟踪区间的改进最大功率点跟踪控制. 中国电机工程学报, 2012, 32(27): 24-31)
    [15] Yin Ming-Hui, Zhang Xiao-Lian, Zou Yun, Zhou Lian-Jun. Improved MPPT control of wind turbines based on optimization of tracking range. Power System Technology, 2014, 38(8): 2180-2185(殷明慧, 张小莲, 邹云, 周连俊. 跟踪区间优化的风力机最大功率点跟踪控制. 电网技术, 2014, 38(8): 2180-2185)
    [16] Wu Ze-Wei, Wu Xiao-Feng. Recovery control for autonomous underwater vehicle based on finite-time synchronization of systems. Acta Automatica Sinica, 2013, 39(12): 2164-2169(吴泽伟, 吴晓锋. 基于有限时间系统同步的自治水下航行器回收控制. 自动化学报, 2013, 39(12): 2164-2169)
    [17] Lu Tao, Yu Hai-Sheng, Shan Bing-Qiang, Chi Jie-Ru. Adaptive sliding mode maximum torque per ampere control of permanent magnet synchronous motor servo system. Control Theory & Applications, 2015, 32(2): 251-255(卢涛, 于海生, 山炳强, 迟洁茹. 永磁同步电机伺服系统的自适应滑模最大转矩/电流控制. 控制理论与应用, 2015, 32(2): 251-255)
    [18] Wang Wei, Yi Jian-Qiang, Zhao Dong-Bin, Liu Dian-Tong. Hierarchical sliding-mode control method for overhead cranes. Acta Automatica Sinica, 2004, 30(5): 784-788(王伟, 易建强, 赵冬斌, 刘殿通. 桥式吊车系统的分级滑模控制方法. 自动化学报, 2004, 30(5): 784-788)
    [19] Beltran B, Ahmed-Ali T, Benbouzid M E H. Sliding mode power control of variable-speed wind energy conversion systems. IEEE Transactions on Energy Conversion, 2008, 23(2): 551-558
    [20] Beltran B, Ahmed-Ali T, Benbouzid M. High-order sliding-mode control of variable-speed wind turbines. IEEE Transactions on Industrial Electronics, 2009, 56(9): 3314-3321
    [21] Yang Y, Mok K T, Tan S C, Hui S Y R. Nonlinear dynamic power tracking of low-power wind energy conversion system. IEEE Transactions on Power Electronics, 2015, 30(9): 5223-5236
    [22] Evangelista C, Puleston P, Valenciaga F, Fridman L M. Lyapunov-designed super-twisting sliding mode control for wind energy conversion optimization. IEEE Transactions on Industrial Electronics, 2013, 60(2): 538-545
    [23] Zhao Liang, Han Hua-Ling, Chen Ning, Zhu Ling-Zhi. Maximum wind energy tracking based on fuzzy sliding mode control for wind power generation system. Electric Power Automation Equipment, 2012, 32(12): 74-79(赵亮, 韩华玲, 陈宁, 朱凌志. 基于模糊滑模控制的风电机组最大风能追踪策略. 电力自动化设备, 2012, 32(12): 74-79)
    [24] Chiu C S, Chiang T S, Chou M L, Hung W J, Lin J H. Maximum power point tracking of wind power systems via fast terminal sliding mode control. In: Proceedings of the 11th IEEE International Conference on Control & Automation (ICCA). Taichung, China: IEEE, 2014. 809-814
    [25] Beltran B, Benbouzid M E H, Ahmed-Ali T. Second-order sliding mode control of a doubly fed induction generator driven wind turbine. IEEE Transactions on Energy Conversion, 2012, 27(2): 261-269
    [26] Jonkman J M, Buhl Jr M L. FAST User's Guide, Technical Report NREL/EL-500-38230, National Renewable Energy Laboratory, USA, 2005
    [27] Darrow P J. Wind Turbine Control Design to Reduce Capital Costs, Technical Report NREL/SR-500-46442, National Renewable Energy Laboratory, USA, 2009
    [28] Geng Hua, Yang Geng. Output power level control of variable-speed variable-pitch wind generators. Proceedings of the CSEE, 2008, 28(25): 130-137(耿华, 杨耕. 变速变桨距风电系统的功率水平控制. 中国电机工程学报, 2008, 28(25): 130-137)
    [29] Yin Ming-Hui, Kuai Di-Zheng, Li Qun, Zhang Xiao-Lian, Zou Yun. A phenomenon of maximum power point tracking invalidity of wind turbines. Proceedings of the CSEE, 2011, 31(18): 40-47(殷明慧, 蒯狄正, 李群, 张小莲, 邹云. 风机最大功率点跟踪的失效现象. 中国电机工程学报, 2011, 31(18): 40-47)
    [30] Jonkman B J. TurbSim User's Guide: Version 1.50, Technical Report NREL/TP-500-46198, National Renewable Energy Laboratory, USA, 2009
  • 加载中
计量
  • 文章访问数:  1999
  • HTML全文浏览量:  105
  • PDF下载量:  1769
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-20
  • 修回日期:  2015-09-14
  • 刊出日期:  2015-12-20

目录

    /

    返回文章
    返回