2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于话题概率模型的语义社区发现方法研究

辛宇 谢志强 杨静

辛宇, 谢志强, 杨静. 基于话题概率模型的语义社区发现方法研究. 自动化学报, 2015, 41(10): 1693-1710. doi: 10.16383/j.aas.2015.c150136
引用本文: 辛宇, 谢志强, 杨静. 基于话题概率模型的语义社区发现方法研究. 自动化学报, 2015, 41(10): 1693-1710. doi: 10.16383/j.aas.2015.c150136
XIN Yu, XIE Zhi-Qiang, YANG Jing. Semantic Community Detection Research Based on Topic Probability Models. ACTA AUTOMATICA SINICA, 2015, 41(10): 1693-1710. doi: 10.16383/j.aas.2015.c150136
Citation: XIN Yu, XIE Zhi-Qiang, YANG Jing. Semantic Community Detection Research Based on Topic Probability Models. ACTA AUTOMATICA SINICA, 2015, 41(10): 1693-1710. doi: 10.16383/j.aas.2015.c150136

基于话题概率模型的语义社区发现方法研究

doi: 10.16383/j.aas.2015.c150136
基金项目: 

国家自然科学基金(61370083, 61370086), 国家教育部博士点基金(20122304110012), 黑 龙江省自然科学基金(F201101), 黑龙江省教育厅科技项目(12531105), 黑 龙江省博士后科研启动项目(LBH-Q13092)资助

详细信息
    作者简介:

    辛宇 哈尔滨理工大学计算机科学与 技术学院讲师. 2015 年获得哈尔滨工程 大学计算机应用技术博士学位. 主要研 究方向为数据库与知识工程. E-mail: xinyu@hrbeu.edu.cn

    通讯作者:

    杨静 哈尔滨工程大学计算机科学与 技术学院教授. 主要研究方向为数据库 与知识工程. 本文通信作者. E-mail: yangjing@hrbeu.edu.cn

Semantic Community Detection Research Based on Topic Probability Models

Funds: 

Supported by National Natural Science Foundation of China (61370083, 61370086), National Research Foundation for the Doctoral Program of Higher Education of China (20122304110012), Natural Science Foundation of Heilongjiang Province (F201101), Educational Commission of Heilongjiang Province (12531105), Postdoctoral Science Foundation of Heilongjiang Province (LBH-Q13092)

  • 摘要: 语义社会网络(Semantic social network, SSN)是一种由信息节点及社会关系构成的复杂网络, 也是语义信息时代社会网络技术研究的热点, 相较于传统社会网络更具实用价值. 其研究内容包含了社会网络的语义分析及社会关系分析, 因此, 语义社会网络的社区挖掘建模具有一定的复杂性. 在语义社会网络的社区挖掘研究方面, 本文分析了当前基于话题概率模型的语义社区发现方法, 并在综述其内容的同时总结了各方法的优缺点, 为后续研究提供了理论基础. 在语义社会网络社区挖掘结果的评判方面, 本文归纳了相关的评价模型, 并通过实验分析对比了各模型对拓扑相关性和语义相关性的倾向性.
  • [1] Girvan M, Newman M E J. Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12): 7821-7826
    [2] Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks. Nature, 1998, 393(6684): 440-442
    [3] Golbeck J, Rothstein M. Linking social networks on the web with FOAF: a semantic web case study. In: Proceeding of the 23rd Association for the Advancement of Artificial Intelligence Conference on Artificial Intelligence. Menlo Park, Canada: AAAI, 2008. 1138-1143
    [4] Newman M E. Fast algorithm for detecting community structure in networks. Physical Review E, 2004, 69(6): 066133
    [5] Blondel V D, Guillaume J L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008, DOI: 10.1088/1742-5468/2008/10/P10008
    [6] Palla G, Derényi I, Farkas I, Vicsek T. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 2005, 435(7043): 814-818
    [7] Shen H W, Cheng X QI, Cai K, Hu M B. Detect overlapping and hierarchical community structure in networks. Physica A: Statistical Mechanics and its Applications, 2009, 388(8): 1706-1712
    [8] Lancichinetti A, Fortunato S, Kertész J. Detecting the overlapping and hierarchical community structure in complex networks. New Journal of Physics, 2009, 11(3): 033015
    [9] Gregory S. Finding overlapping communities in networks by label propagation. New Journal of Physics, 2010, 12(10): 103018
    [10] Berners-Lee T, Hendler J, Lassila O. The semantic web. Scientific American, 2001, 284(5): 28-37
    [11] Thovex C, Trichet F. Semantic social networks analysis. Social Network Analysis and Mining, 2013, 3(1): 35-49
    [12] Yang Jing, Xin Yu, Xie Zhi-Qiang. Semantics social network community detection algorithm based on topic comprehensive factor analysis. Journal of Computer Research and Development, 2014, 51(3): 559-569(杨静, 辛宇, 谢志强. 基于话题综合因子分析的语义社会网络社区发现算法. 计算机研究与发展, 2014, 51(3): 559-569)
    [13] Blei D M, Ng A Y, Jordan M I. Latent dirichllocation. Journal of Machine Learning Research, 2003, 3(8): 993-1022
    [14] Hofmann T. Probabilistic latent semantic indexing. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 1999. 50-57
    [15] Bischof J, Airoldi E. Summarizing topical content with word frequency and exclusivity. In: Proceedings of the 29th International Conference on Machine Learning. New York, USA: ICML, 2012. 201-208
    [16] Barabási A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286(5439): 509-512
    [17] Ding Y. Community detection: topological vs. topical. Journal of Informetrics, 2011, 5(4): 498-514
    [18] Steyvers M, Smyth P, Rosen-Zvi M, Griffiths T. Probabilistic author-topic models for information discovery. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2004. 306-315
    [19] McCallum A, Corrada-Emmanuel A, Wang X R. Topic and role discovery in social networks. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence. San Francisco, USA: ACM, 2005. 786-791
    [20] McCallum A, Wang X R, Corrada-Emmanuel A. Topic and role discovery in social networks with experiments on Enron and academic email. Journal of Artificial Intelligence Research, 2007, 30(1): 249-272
    [21] Pathak N, DeLong C, Banerjee A, Erickson K. Social topic models for community extraction. In: Proceedings of the 2nd SNA-KDD Workshop. New York, USA: ACM, 2008. 1-8
    [22] Airoldi E M, Blei D M, Fienberg S E, Xing E P, Jaakkola T. Mixed membership stochastic block models for relational data with application to protein-protein interactions. In: Proceedings of the 2006 International Biometrics Society Annual Meeting. Tampa, FL, USA: ENAR, 2006. 23-31
    [23] Wang X R, McCallum A. Topics over time: a non-Markov continuous-time model of topical trends. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2006. 424-433
    [24] Griffiths T. Gibbs sampling in the generative model of latent dirichlet allocation. Standford University, 2002, 518(11): 1-3
    [25] Wang X R, McCallum A, Wei X. Topical n-grams: phrase and topic discovery, with an application to information retrieval. In: Proceeding of 7th IEEE International Conference on Data Mining. Omaha, USA: IEEE, 2007. 697-702
    [26] Wallach H. Topic modeling: beyond bag-of-words. In: Proceedings of the 23rd International Conference on Machine Learning. Pittsburgh, USA: ACM, 2006. 977-984
    [27] Mei Q Z, Cai D, Zhang D, Zhai C X. Topic modeling with network regularization. In: Proceedings of the 17th international conference on World Wide Web. New York, USA: ACM, 2008. 101-110
    [28] White S, Smyth S. A spectral clustering approach to finding communities in graphs. In: Proceedings of the 5th SIAM International Conference on Data Mining. Houston, USA: SIAM, 2005. 76-84
    [29] Azran A, Ghahramani Z. Spectral methods for automatic multiscale data clustering. In: Proceeding of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2006. 190-197
    [30] Lin C H, He Y L. Joint sentiment/topic model for sentiment analysis. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York, USA: ACM, 2009. 375-384
    [31] Yang T B, Jin R, Chi Y, Zhu S H. Combining link and content for community detection: a discriminative approach. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2009. 927-936
    [32] Lacoste-Julien S, Sha F, Jordan M. DiscLDA: discriminative learning for dimensionality reduction and classification. In: Proceeding of the 2009 Advances in Neural Information Processing Systems. Piscataway, USA: NIPS, 2009. 897-904
    [33] Li D F, He B, Ding Y, Tang J, Sugimoto C, Qin Z, Yan E J, Li J Z, Dong T X. Community-based topic modeling for social tagging. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management. New York, USA: ACM, 2010. 1565-1568
    [34] Leskovec J, Lang K J, Mahoney M. Empirical comparison of algorithms for network community detection. In: Proceedings of the 19th International Conference on World Wide Web. New York, USA: ACM, 2010. 631-640
    [35] Tang J, Jin R M, Zhang J. A topic modeling approach and its integration into the random walk framework for academic search. In: Proceeding of 8th IEEE International Conference on Data Mining. Pisa, Italy: IEEE, 2008. 1055-1060
    [36] Tang J, Zhang J, Yao L M, Li J Z, Zhang L, Su Z. ArnetMiner: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2008. 990-998
    [37] Leskovec J, Lang K J, Dasgupta A, Mahoney M W. Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics, 2009, 6(1): 29-123
    [38] Ríos S A, Muñoz R. Dark Web portal overlapping community detection based on topic models. In: Proceedings of the 2012 ACM SIGKDD Workshop on Intelligence and Security Informatics. New York, USA: ACM, 2012. 1-7
    [39] Xie J R, Szymanski B K, Liu X M. Slpa: uncovering overlapping communities in social networks via a speaker-listener interaction dynamic process. In: Proceeding of the 11th IEEE International Conference on Data Mining Workshops. Piscataway, USA: IEEE, 2011. 344-349
    [40] Barber M J, Clark J W. Detecting network communities by propagating labels under constraints. Physical Review E, 2009, 80(2): 026129.1-026129.11
    [41] Jang J, Myaeng S H. Discovering dedicators with topic-based semantic social networks. In: Proceeding of the 7th International Conference on Weblogs and Social Media. Boston, USA: ICWSM, 2013. 1-12
    [42] Erosheva E, Fienberg S, Lafferty J. Mixed-membership models of scientific publications. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(S1): 5220-5227
    [43] Dietz L, Bickel S, Scheffer T. Unsupervised prediction of citation influences. In: Proceedings of the 24th International Conference on Machine learning. Piscataway, USA: ACM, 2007. 233-240
    [44] Chang J, Blei D W. Relational topic models for document networks. In: Proceedings of the 2009 International Conference on Artificial Intelligence and Statistics. Piscataway, USA: IEEE, 2009. 81-88
    [45] Sun Y Z, Han J W, Gao J T. Itopicmodel: information network-integrated topic modeling. In: Proceeding of 9th IEEE International Conference on Data Mining. Miami, FL, USA: IEEE, 2009. 493-502
    [46] Perez P. Markov random fields and images. CWI Quarterly, 1998, 11(4): 413-437
    [47] Liu Y, Niculescu-Mizil A, Gryc W. Topic-link LDA: joint models of topic and author community. In: Proceedings of the 26th Annual International Conference on Machine Learning. Piscataway, USA: ACM, 2009. 665-672
    [48] L'Huillier G, Ríos S A, Alvarez H, Aguilera F. Topic-based social network analysis for virtual communities of interests in the dark web. In: Proceeding of the 2010 ACM SIGKDD Workshop on Intelligence and Security Informatics. New York, USA: ACM, 2010. 23-31
    [49] Zheng G Q, Guo G W, Yang L C, Xu S L, Bao S H, Su Z, Han D Y, Yu Y. Mining topics on participations for community discovery. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2011. 445-454
    [50] Chahal P, Singh M, Kumar S. An ontology based approach for finding semantic similarity between web documents. International Journal of Current Engineering and Technology, 2013, 3(5): 1925-1931
    [51] Kleinberg J M. Authoritative sources in a hyperlinked environment. Journal of the ACM, 1999, 46(5): 604-632
    [52] Kemp C, Tenenbaum J B. Learning systems of concepts with an infinite relational model. In: Proceeding of the 21st National Conference on Artificial Intelligence. Menlo Park, Canada: AAAI, 2006. 1-15
    [53] Long B, Zhang Z M, Yu P S. A probabilistic framework for relational clustering. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2007. 470-479
    [54] Zhu S H, Yu K, Chi Y, Gong Y H. Combining content and link for classification using matrix factorization. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2007. 487-494
    [55] Xu W, Liu X, Gong Y H. Document clustering based on non-negative matrix factorization. In: Proceedings of the 26th annual international ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2003. 267-273
    [56] Wang F, Li T, Wang X, Zhu S G, Ding C. Community discovery using nonnegative matrix factorization. Data Mining and Knowledge Discovery, 2011, 22(3): 493-521
    [57] Nallapati R, Cohen W. Link-PLSA-LDA: a new unsupervised model for topics and influence in blogs. In: Proceeding of the 2nd International Conference on Weblogs and Social Media. Piscataway, USA: AAAI, 2008. 1-12
    [58] Nallapati R M, Ahmed A, Xing E P, Cohen W W. Joint latent topic models for text and citations. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2008. 542-550
    [59] Yin Z J, Cao L L, Gu Q Q, Han J W. Latent community topic analysis: integration of community discovery with topic modeling. ACM Transactions on Intelligent Systems and Technology, 2012, 3(4): 63-63
    [60] Cha Y, Cho J. Social-network analysis using topic models. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2012. 565-574
    [61] Hu B, Song Z, Ester M. User features and social networks for topic modeling in online social media. In: Proceeding of the 2012 International Conference on Advances in Social Networks Analysis and Mining. Washington D.C., USA: ACM, 2012. 202-209
    [62] Natarajan N, Sen P, Chaoji V. Community detection in content-sharing social networks. In: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. New York, USA: ACM, 2013. 82-89
    [63] Evans T S, Lambiotte R. Line graphs, link partitions, and overlapping communities. Physical Review E, 2009, 80(1): 016105
    [64] Nowicki K, Snijders T A B. Estimation and prediction for stochastic blockstructures. Journal of the American Statistical Association, 2001, 96(455): 1077-1087
    [65] Jamali M, Huang T L, Ester M. A generalized stochastic block model for recommendation in social rating networks. In: Proceedings of the 5th ACM Conference on Recommender Systems. New York, USA: ACM, 2011. 53-60
    [66] Wang X R, Mohanty N, McCallum A. Group and topic discovery from relations and text. In: Proceedings of the 3rd International Workshop on Link Discovery. New York, USA: ACM, 2005. 28-35
    [67] Zhou D, Manavoglu E, Li J, Giles C L, Zha H Y. Probabilistic models for discovering e-communities. In: Proceedings of the 15th International Conference on World Wide Web. New York, USA: ACM, 2006. 173-182
    [68] Zhang H Z, Qiu B J, Giles C L, Foley H C, Yen J. An LDA-based community structure discovery approach for large-scale social networks. In: Proceeding of the 2007 IEEE Intelligence and Security Informatics. New Brunswick, NJ, USA: IEEE, 2007. 200-207
    [69] Zhang H Z, Giles C L, Foley H C, Yen H. Probabilistic community discovery using hierarchical latent gaussian mixture model. In: Proceeding of the 22nd National Conference on Artificial Intelligence. Menlo Park, Canada: AAAI, 2007. 663-668
    [70] Zhang H Z, Li W, Wang X R, Giles C L, Foley H C, Yen J. HSN-PAM: finding hierarchical probabilistic groups from large-scale networks. In: Proceeding of the 7th IEEE International Conference on Data Mining Workshops. Omaha, NE, USA: IEEE, 2007. 27-32
    [71] Sachan M, Contractor D, Faruquie T, Subramaniam V. Probabilistic model for discovering topic based communities in social networks. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management. New York, USA: ACM, 2011. 2349-2352
    [72] Henderson K, Eliassi-Rad T. Applying latent dirichlet allocation to group discovery in large graphs. In: Proceedings of the 2009 ACM Symposium on Applied Computing. New York, USA: ACM, 2009. 1456-1461
    [73] Henderson K, Elisssi-Rad T, Papadimitriou S, Faloutsos C. HCDF: a hybrid community discovery framework. In: Proceedings of the 2010 SIAM International Conference on Data Mining. Columbus, Ohio, USA: SIAM, 2010. 754-765
    [74] Kumar R, Novak J, Tomkins A. Structure and evolution of online social networks. Link Mining: Models, Algorithms and Applications. New York: Springer, 2010. 337-357
    [75] Kwak H, Lee C, Park H, Moon S. What is Twitter, a social network or a news media? In: Proceedings of the 19th International World Wide Web Conference Series. New York, USA: ACM, 2010. 591-600
    [76] Sachan M, Contractor D, Faruquie T A, Subramaniam L V. Using content and interactions for discovering communities in social networks. In: Proceedings of the 21st International Conference on World Wide Web. New York, USA: ACM, 2012. 331-340
    [77] Xin Yu, Yang Jing, Xie Zhi-Qiang. An overlapping semantic community structure detecting algorithm by label propagation. Acta Automatica Sinica, 2014, 40(10): 2262-2275(辛宇, 杨静, 谢志强. 基于标签传播的语义重叠社区发现算法. 自动化学报, 2014, 40(10): 2262-2275)
    [78] Xin Yu, Yang Jing, Xie Zhi-Qiang. An overlapping community structure detecting algorithm in semantic social network based on the block field. Acta Automatica Sinica, 2015, 41(2): 362-375(辛宇, 杨静, 谢志强. 一种面向语义重叠社区发现的Block场取样算法. 自动化学报, 2015, 41(2): 362-375)
    [79] Xin Y, Yang J, Xie Z Q. A semantic overlapping community detection algorithm based on field sampling. Expert Systems with Applications, 2015, 42(1): 366-375
    [80] Xin Y, Yang J, Xie Z Q, Zhang J P. An overlapping semantic community detection algorithm base on the ARTs multiple sampling models. Expert Systems with Applications, 2015, 42(7): 3420-3432
    [81] Nicosia V, Mangioni G, Carchiolo V, Malgeri M. Extending the definition of modularity to directed graphs with overlapping communities. Journal of Statistical Mechanics: Theory and Experiment, 2009, (3): P03024
    [82] Newman M E J, Girvan M. Finding and evaluating community structure in networks. Physical Review E, 2004, 69(2): 026113
    [83] Java A, Joshi A, Finin T. Detecting commmunities via simultaneous clustering of graphs and folksonomies. In: Proceedings of the 10th Workshop on Web Mining and Web Usage Analysis. New York, USA: ACM 2008. 23-32
    [84] Chen S, Cowan C F N, Grant P M. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Transactions on Neural Networks, 1991, 2(2): 302-309
    [85] Zhao Z Y, Feng S Z, Wang Q L, Huang Z X, Graham J W, Fan J P. Topic oriented community detection through social objects and link analysis in social network. Knowledge-Based Systems, 2012, 26: 164-173
    [86] Zhu X J, Ghahramani Z, Lafferty J. Semi-supervised learning using Gaussian fields and harmonic functions. In: Proceedings of the 20nd International Conference on Machine Learning. Washington D.C., USA: MIT Press, 2003. 912-919
    [87] Cruz J D, Bothorel C, Poulet F. Entropy based community detection in augmented social networks. In: Proceedings of the 2011 International Conference on Computational Aspects of Social Network. Salamanca, Apain: IEEE, 2011. 163-168
    [88] Strehl A, Ghosh J. Cluster ensembles --- a knowledge reuse framework for combining multiple partitions. The Journal of Machine Learning Research, 2003, 3: 583-617
    [89] Rawashdeh A, Rawashdeh M, Díaz I, Ralescu A. Measures of semantic similarity of nodes in a social network. In: Proceeding of the 15th Information Processing and Management of Uncertainty in Knowledge-Based Systems. Piscataway, USA: IEEE, 2014. 76-85
    [90] Akcora C G, Carminati B, Ferrari E. Network and profile based measures for user similarities on social networks. In: Proceeding of the 2011 IEEE International Conference on Information Reuse and Integration. Las Vegas, NV, USA: IEEE, 2011. 292-298
    [91] Deshpande M, Karypis G. Item-based top-N recommendation algorithms. ACM Transactions on Information Systems, 2004, 22(1): 143-177
    [92] Demir G N, Uyar A S, Ögüdücü S G. Graph-based sequence clustering through multiobjective evolutionary algorithms for web recommender systems. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation. New York, USA: ACM, 2007. 1943-1950
    [93] Rousseeuw P J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 1987, 20: 53-65
    [94] Kannan R, Vempala S, Vetta A. On clusterings: good, bad and spectral. Journal of the ACM, 2004, 51(3): 497-515
    [95] Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D. Defining and identifying communities in networks. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(9): 2658-2663
    [96] Shi J, Malik J. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905
    [97] Lancichinetti A, Fortunato S, Radicchi F. Benchmark graphs for testing community detection algorithms. Physical Review E, 2008, 78(4): 046110
    [98] Lancichinetti A, Fortunato S. Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Physical Review E, 2009, 80(1): 016118
    [99] Lindgren F, Rue H, Lindström J. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2011, 73(4): 423-498
  • 加载中
计量
  • 文章访问数:  1773
  • HTML全文浏览量:  76
  • PDF下载量:  2845
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-31
  • 修回日期:  2015-06-24
  • 刊出日期:  2015-10-20

目录

    /

    返回文章
    返回