2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于虚拟三面体的摄像机与二维激光测距仪外参数最小解标定新算法

胡钊政 赵斌 李娜 夏克文

胡钊政, 赵斌, 李娜, 夏克文. 基于虚拟三面体的摄像机与二维激光测距仪外参数最小解标定新算法. 自动化学报, 2015, 41(11): 1951-1960. doi: 10.16383/j.aas.2015.c150108
引用本文: 胡钊政, 赵斌, 李娜, 夏克文. 基于虚拟三面体的摄像机与二维激光测距仪外参数最小解标定新算法. 自动化学报, 2015, 41(11): 1951-1960. doi: 10.16383/j.aas.2015.c150108
HU Zhao-Zheng, ZHAO Bin, LI Na, XIA Ke-Wen. Minimal Solution to Extrinsic Calibration of Camera and 2D Laser Rangefinder Based on Virtual Trihedron. ACTA AUTOMATICA SINICA, 2015, 41(11): 1951-1960. doi: 10.16383/j.aas.2015.c150108
Citation: HU Zhao-Zheng, ZHAO Bin, LI Na, XIA Ke-Wen. Minimal Solution to Extrinsic Calibration of Camera and 2D Laser Rangefinder Based on Virtual Trihedron. ACTA AUTOMATICA SINICA, 2015, 41(11): 1951-1960. doi: 10.16383/j.aas.2015.c150108

基于虚拟三面体的摄像机与二维激光测距仪外参数最小解标定新算法

doi: 10.16383/j.aas.2015.c150108
基金项目: 

国家自然科学基金(51208168),湖北省自然科学基金(2015CFB252),河北省教育厅青年拔尖人才计划(BJ2014-013),武汉市青年科技晨光计划(2015070404010196)资助

详细信息
    作者简介:

    赵斌 河北工业大学信息工程学院硕士研究生.主要研究方向为摄像机与激光外参数标定和优化算法设计.E-mail:terry8120106@aliyun.com

    李娜 武汉理工大学自动化学院讲师.主要研究方向为电子电路系统和自动控制.E-mail:nal926@whut.edu.cn

    夏克文 河北工业大学教授.主要研究方向为智能信息处理和优化算法设计.E-mail:kwxia@hebut.edu.cn

    通讯作者:

    胡钊政 武汉理工大学教授.主要研究方向为三维计算机视觉,智能车路系统和主动视觉监控系统.本文通信作者.E-mail:zzhu@whut.edu.cn

Minimal Solution to Extrinsic Calibration of Camera and 2D Laser Rangefinder Based on Virtual Trihedron

Funds: 

Supported by National Natural Science Foundation of China (51208168), Natural Science Foundation of Hubei Province (2015 CFB252), the Youth Top-Notch Plan of Hebei Department of Education (BJ2014-013), and Wuhan Youth Chenguang Plan (2015070404010196)

  • 摘要: 摄像机与激光测距仪(Camera and laser rangefinder, LRF)被广泛应用于机器人、移动道路测量车、无人驾驶等领域. 其中, 外参数标定是实现图像与LIDAR数据融合的第一步, 也是至关重要的一步. 本文提出一种新的基于最小解(Minimal solution) 外参数标定算法, 即摄像机与激光仅需对标定棋盘格采集三次数据. 本文首次提出虚拟三面体概念, 并以之构造透视三点问题(Perspective-three-point, P3P)用以计算激光与摄像机之间的坐标转换关系.相对于文献在对偶三维空间(Dual 3D space) 中构造的P3P问题, 本文直接在原始三维空间中构造P3P问题, 具有更直观的几何意义, 更利于对P3P问题进行求解与分析. 针对P3P问题多达八组解的问题, 本文还首次提出一种平面物成像区域约束方法从多解中获取真解, 使得最小解标定法具有更大的实用性与灵活性. 实验中分别利用模拟数据与真实数据对算法进行测试.算法结果表明, 在同等输入的条件下, 本文算法性能超过文献中的算法. 本文所提的平面物成像区域约束方法能从多解中计算出真解, 大大提高了最小解算法的实用性与灵活性.
  • [1] Kassir A, Peynot T. Reliable automatic camera-laser calibration. In:Proceedings of the 2010 Australasian Conference on Robotics and Automation. Brisbane, Australia:ARAA, 2010. 1-10
    [2] [2] Bosse M, Zlot R, Flick P. Zebedee:design of a spring-mounted 3-D range sensor with application to mobile mapping. IEEE Transactions on Robotics, 2012, 28(5):1104-1119
    [3] [3] Osgood T J, Huang Y P. Calibration of laser scanner and camera fusion system for intelligent vehicles using Nelder-Mead optimization. Measurement Science and Technology, 2013, 24(3):1-10
    [4] [4] Chen Z, Zhuo L, Sun K Q, Zhang C X. Extrinsic calibration of a camera and a laser range finder using point to line constraint. Procedia Engineering, 2012, 29:4348-4352
    [5] [5] Li G H, Liu Y H, Dong L, Cai X P. An algorithm for extrinsic parameters calibration of a camera and a laser range finder using line features. In:Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, CA, United states:IEEE, 2007. 3854-3859
    [6] [6] Ha J E. Extrinsic calibration of a camera and laser range finder using a new calibration structure of a plane with a triangular hole. International Journal of Control, Automation and Systems, 2012, 10(6):1240-1244
    [7] [7] Kwak K, Huber D F, Badino H, Kanade T. Extrinsic calibration of a single line scanning LIDAR and a camera. In:Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, CA, USA:IEEE, 2011. 3283-3289
    [8] [8] Zhang Z Y. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11):1330-1334
    [9] [9] Zhang Q, Pless R. Extrinsic calibration of a camera and laser range finder (improves camera calibration). In:Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems. Sendai, Japan:IEEE, 2004. 2301-2306
    [10] Vasconcelos F, Barreto J P, Nunes U. A minimal solution for the extrinsic calibration of a camera and a laser-rangefinder. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2097-2107
    [11] Fishler M A, Bolles R C. Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 1981, 24(6):381-395
    [12] Zhou L P. A new minimal solution for the extrinsic calibration of a 2D LIDAR and a camera using three plane-line correspondences. IEEE Sensors Journal, 2014, 14(2):442-454
    [13] Yang H, Liu X L, Patras I. A simple and effective extrinsic calibration method of a camera and a single line scanning LIDAR. In:Proceedings of the 21st International Conference on Pattern Recognition (ICPR). Tsukuba, Japan:IEEE, 2012. 1439-1442
    [14] Dacorogna B, Marchal P. The role of perspective functions in convexity, poly-convexity, rank-one convexity and separate convexity. Journal of Convex Analysis, 2008, 15(2):271-284
  • 加载中
计量
  • 文章访问数:  1979
  • HTML全文浏览量:  86
  • PDF下载量:  1588
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-06
  • 修回日期:  2015-07-03
  • 刊出日期:  2015-11-20

目录

    /

    返回文章
    返回