[1]
|
Wang Shuang-Cheng, Du Rui-Jie, Liu Ying. The learning and optimization of full Bayes classifiers with continuous attributes. Chinese Journal of Computers, 2012, 35(10): 2129 -2138(王双成, 杜瑞杰, 刘颖. 连续属性完全贝叶斯分类器的学习与优化. 计算机学报, 2012, 35(10): 2129-2138)
|
[2]
|
Wang S C, Xu G L, Du R J. Restricted Bayesian classification networks. Science China Information Sciences, 2013, 56(7): 1-15
|
[3]
|
Friedman N, Geiger D, Goldszmidt M. Bayesian network classifiers. Machine Learning, 1997, 29(2-3): 131-163
|
[4]
|
Jing Y S, Pavlović V, Rehg J M. Boosted Bayesian network classifiers. Machine Learning, 2008, 73(2): 155-184
|
[5]
|
Wang Zhong-Feng, Wang Zhi-Hai. An optimization algorithm of Bayesian network classifiers by derivatives of conditional log likelihood. Chinese Journal of Computers, 2012, 35(2): 364-374(王中锋, 王志海. 基于条件对数似然函数导数的贝叶斯网络分类器优化算法. 计算机学报, 2012, 35(2): 364-374)
|
[6]
|
Webb G I, Boughton J R, Zheng F, Ting K M, Salem H. Learning by extrapolation from marginal to full-multivariate probability distributions: decreasingly naive Bayesian classification. Machine Learning, 2012, 86(2): 233-272
|
[7]
|
Feng Yue-Jin, Zhang Feng-Bin. Max-relevance min-redundancy restrictive BAN classifier learning algorithm. Journal of Chongqing University, 2014, 37(6): 71-77(冯月进, 张凤斌. 最大相关最小冗余限定性贝叶斯网络分类器学习算法. 重庆大学学报, 2014, 37(6): 71-77)
|
[8]
|
López-Cruz P L, Larrañaga P, DeFelipe J, Bielza C. Bayesian network modeling of the consensus between experts: an application to neuron classification. International Journal of Approximate Reasoning, 2014, 55(1): 3-22
|
[9]
|
John G H, Langley P. Estimating continuous distributions in Bayesian classifiers. In: Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence (UAI-1995). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1995. 338-345
|
[10]
|
Pérez A, Larrañaga P, Inza I. Supervised classification with conditional Gaussian networks: increasing the structure complexity from naive Bayes. International Journal of Approximate Reasoning, 2006, 43(1): 1-25
|
[11]
|
Pérez A, Larrañaga P, Inza I. Bayesian classifiers based on kernel density estimation: flexible classifiers. International Journal of Approximate Reasoning, 2009, 50(2): 341-362
|
[12]
|
Bounhas M, Mellouli K, Prade H, Serrurier M. Possibilistic classifiers for numerical data. Soft Computing, 2013, 17(5): 733-751
|
[13]
|
He Y L, Wang R, Kwong S, Wang X Z. Bayesian classifiers based on probability density estimation and their applications to simultaneous fault diagnosis. Information Sciences, 2014, 259(2): 252-268
|
[14]
|
Xia Zhan-Guo, Xia Shi-Xiong, Cai Shi-Yu, Wan Ling. Semi-supervised Gaussian process classification algorithm addressing the class imbalance. Journal on Communications, 2013, 34(5): 42-51(夏战国, 夏士雄, 蔡世玉, 万玲. 类不均衡的半监督高斯过程分类算法. 通信学报, 2013, 34(5): 42-51)
|
[15]
|
Liu G Q, Wu J X, Zhou S P. Probabilistic classifiers with a generalized Gaussian scale mixture prior. Pattern Recognition, 2013, 46(1): 332-345
|
[16]
|
Dong W Y, Zhou M C. Gaussian classifier-based evolutionary strategy for multimodal optimization. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(6): 1200-1216
|
[17]
|
Pavani S K, Gomez D D, Frangi A F. Gaussian weak classifiers based on co-occurring Haar-like features for face detection. Pattern Analysis and Applications, 2014, 17(2): 431439
|
[18]
|
Geiger D, Heckerman D. Learning Gaussian Networks. Technical Report MSR-TR-94-10, Microsoft Research, Advanced Technology Division, 1994.
|
[19]
|
Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo, California, USA: Morgan Kaufmann Publishers Inc., 1988. 383-408
|
[20]
|
Shachter R D, Kenley C R. Gaussian influence diagrams. Management Science, 1989, 35(5): 527-550
|
[21]
|
Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1995. 1137-1143
|
[22]
|
Quinlan J R. Induction of decision trees. Machine Learning, 1986, 1(1): 81-106
|
[23]
|
Wang Shuang-Cheng, Yuan Sen-Miao. Research on learning Bayesian networks structure with missing data. Journal of Software, 2004, 15(7): 1042-1048(王双成, 苑森淼. 具有丢失数据的贝叶斯网络结构学习研究. 软件学报, 2004, 15(7): 1042-1048)
|
[24]
|
Fayyad U M, Irani K B. Multi-interval discretization of continuous-valued attributes for classification learning. In: Proceedings of the 13th International Joint Conference on Artificial Intelligence. Chambery, France, 1993. 1022-1027
|
[25]
|
Demşar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 2006, 7(1): 1-30
|