2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于组合语义的文本情绪分析模型

乌达巴拉 汪增福

乌达巴拉, 汪增福. 一种基于组合语义的文本情绪分析模型. 自动化学报, 2015, 41(12): 2125-2137. doi: 10.16383/j.aas.2015.c150064
引用本文: 乌达巴拉, 汪增福. 一种基于组合语义的文本情绪分析模型. 自动化学报, 2015, 41(12): 2125-2137. doi: 10.16383/j.aas.2015.c150064
Odbal, WANG Zeng-Fu. Emotion Analysis Model Using Compositional Semantics. ACTA AUTOMATICA SINICA, 2015, 41(12): 2125-2137. doi: 10.16383/j.aas.2015.c150064
Citation: Odbal, WANG Zeng-Fu. Emotion Analysis Model Using Compositional Semantics. ACTA AUTOMATICA SINICA, 2015, 41(12): 2125-2137. doi: 10.16383/j.aas.2015.c150064

一种基于组合语义的文本情绪分析模型

doi: 10.16383/j.aas.2015.c150064
基金项目: 

国家自然科学基金(61472393)资助

详细信息
    作者简介:

    汪增福中国科学院合肥智能机械研究所研究员. 中国科学技术大学语音及语言信息处理国家工程实验室教授. 主要研究方向为立体视觉、生物特征识别、情感计算以及智能机器人.E-mail: zfwang@ustc.edu.cn

    通讯作者:

    乌达巴拉中国科学技术大学自动化系博士研究生.中国科学院合肥智能机械研究所助理研究员.主要研究方向为自然语言处理、情感计算、人工智能与模式识别.本文通信作者.

Emotion Analysis Model Using Compositional Semantics

Funds: 

Supported by National Natural Science Foundation of China (61472393)

  • 摘要: 文本情绪分析属于细颗粒度文本情感分析范畴.传统的基于 监督学习的方法,大多注重从表面词形提取特征,对语言的结构化特征 考虑较少,无法应对特征稀疏问题,也无法挖掘文本中隐含的深层语 言信息(包括词语搭配和语义韵).上述问题的存在导致现有系统 的分类性能不高,尤其对隐性文本情绪分类问题表现出较大的局限 性.本文尝试将基于依存句法的词语搭配特征和基于组合语义的深度 特征应用于文本情绪分类,提出了一种以短语为主要线索的半马 尔科夫条件随机场文本情绪分析模型.为了验证模型的有效性,利 用实际构建的相关实验语料,开展了相关实验研究.实验结果表 明,本文方法不仅可以显著提高文本情绪分类的准确率,而且对解 决隐性情感分析问题也具有重要作用.
  • [1] Lutz C, White G M. The anthropology of emotions. Annual Review of Anthropology, 1986, 15: 405-436
    [2] Wei Nai-Xing. Fundamentals of Lexis. Shanghai: Shanghai Foreign Language Education Press, 2011.(卫乃兴. 词语学要义. 上海: 上海外语教育出版社, 2011.)
    [3] Alm C O, Roth D, Sproat R. Emotions from text: machine learning for text-based emotion prediction. In: Proceedings of the 2005 Conference on Human Language Technology and Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2005. 579-586
    [4] Aman S, Szpakowicz S. Using roget's thesaurus for fine-grained emotion recognition. In: Proceedings of the 3rd International Joint Conference on Natural Language Processing. Hyderabad, India: Researchgate, 2008. 312-318
    [5] Das D, Bandyopadhyay S. Word to sentence level emotion tagging for Bengali blogs. In: Proceedings of the 47th Annual Meeting of the Association for Computational Linguistics and the 4th International Joint Conference on Natural Language Processing of the AFNLP. Stroudsburg, PA, USA: Association for Computational Linguistics, 2009. 149-152
    [6] Nakagawa T, Inui K, Kurohashi S. Dependency tree-based sentiment classification using CRFs with hidden variables. In: Proceedings of Human Language Technologies: the 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2010. 786-794
    [7] Xu Bing, Zhao Tie-Jun, Wang Shan-Yu, Zheng De-Quan. Extraction of opinion targets based on shallow parsing features. Acta Automatica Sinica, 2011, 37(10): 1241-1247(徐冰, 赵铁军, 王山雨, 郑德权. 基于浅层句法特征的评价对象抽取研究. 自动化学报, 2011, 37(10): 1241-1247)
    [8] Neviarouskaya A, Prendinger H, Ishizuka M. Compositionality principle in recognition of fine-grained emotions from text. In: Proceedings of International Conference on Weblogs and Social Media. San Jose, California: The AAAI Press, 2009. 6-24
    [9] Neviarouskaya A, Prendinger H, Ishizuka M. Recognition of affect, judgment, and appreciation in text. In: Proceedings of the 23rd International Conference on Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2010. 806-814
    [10] Chaffar S, Inkpen D. Using a heterogeneous dataset for emotion analysis in text. In: Proceedings of the Canadian AI'11 Proceedings of the 24th Canadian conference on Advances in Artificial Intelligence. St. John's, Canada: Springer, 2011. 62-67
    [11] Mohammad S, Turney P D. Emotions evoked by common words and phrases: using mechanical Turk to create an emotion lexicon. In: Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text. Stroudsburg, PA, USA: Association for Computational Linguistics, 2010. 26-34
    [12] Volkova S, Dolan W B, Wilson T. CLex: a lexicon for exploring color, concept and emotion associations in language. In: Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2012. 306-314
    [13] Purver M, Battersby S. Experimenting with distant supervision for emotion classification. In: Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2012. 482-491
    [14] Qadir A, Riloff E. Bootstrapped learning of emotion hashtags #hashtags4you. In: Proceeding of the 4th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis. Stroudsburg, PA, USA: Association for Computational Linguistics, 2013. 2-11
    [15] Quan C Q, Ren F J. Construction of a blog emotion corpus for Chinese emotional expression analysis. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2009. 1446-1454
    [16] Xu G, Meng X F, Wang H F. Build Chinese emotion lexicons using a graph-based algorithm and multiple resources. In: Proceedings of the 23rd International Conference on Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2010. 1209-1217
    [17] Wang L, Yu S W. Construction of a Chinese idiom knowledge base and its applications. In: Proceedings of the Multiword Expressions: From Theory to Applications (MWE 2010). Beijing, China: Association for Computational Linguistics, 2010. 11-18
    [18] Yang M, Peng B L, Chen Z, Zhu D J, Chow K P. A topic model for building fine-grained domain-specific emotion lexicon. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2014. 421-426
    [19] Choi Y, Cardie C. Learning with compositional semantics as structural inference for subsentential sentiment analysis. In: Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2008. 793-801
    [20] Mitchell J, Lapata M. Vector-based models of semantic composition. In: Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2008. 236-244
    [21] Baroni M, Zamparelli R. Nouns are vectors, adjectives are matrices: representing adjective-noun constructions in semantic space. In: Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2010. 1183-1193
    [22] Socher R, Pennington J, Huang E H, Ng A Y, Manning C D. Semi-supervised recursive autoencoders for predicting sentiment distributions. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2011. 151-161
    [23] Socher R, Huval B, Manning C D, Ng A Y. Semantic compositionality through recursive matrix-vector spaces. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Stroudsburg, PA, USA: Association for Computational Linguistics, 2012. 1201-1211
    [24] Moilanen K, Pulman S. Sentiment composition. In: Proceedings of Recent Advances in Natural Language Processing. Borovets, Bulgaria: University of Oxford, 2007. 378-382
    [25] Yessenalina A, Cardie C. Compositional matrix-space models for sentiment analysis. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2011. 172-182
    [26] Mohammad S. Portable features for classifying emotional text. In: Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA, USA: Association for Computational Linguistics, 2012. 587-591
    [27] Hermann K M, Blunsom P. The role of syntax in vector space models of compositional semantics. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2013. 894-904
    [28] Sui Zhi-Fang, Yu Shi-Wen. The research on recognizing the predicate head of a Chinese simple sentence in EBMT. Journal of Chinese Information Processing, 1998, 12(4): 39-46(穗志方, 俞士汶. 面向EBMT的汉语单句谓语中心词识别研究. 中文信息学报, 1998, 12(4): 39-46)
    [29] Turian J, Ratinov L, Bengio Y. Word representations: a simple and general method for semi-supervised learning. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 2010. 384-394
    [30] Sarawagi S, Cohen W W. Semi-Markov conditional random fields for information extraction. In: Proceedings of the Eighteenth Annual Conference on Neural Information Processing Systems. Montreal, Quebec, Canada, 2004.
  • 加载中
计量
  • 文章访问数:  2035
  • HTML全文浏览量:  107
  • PDF下载量:  1496
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-13
  • 修回日期:  2015-09-23
  • 刊出日期:  2015-12-20

目录

    /

    返回文章
    返回