2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类工业过程运行反馈优化控制方法

范家璐 张也维 柴天佑

范家璐, 张也维, 柴天佑. 一类工业过程运行反馈优化控制方法. 自动化学报, 2015, 41(10): 1754-1761. doi: 10.16383/j.aas.2015.c150061
引用本文: 范家璐, 张也维, 柴天佑. 一类工业过程运行反馈优化控制方法. 自动化学报, 2015, 41(10): 1754-1761. doi: 10.16383/j.aas.2015.c150061
FAN Jia-Lu, ZHANG Ye-Wei, CHAI Tian-You. Optimal Operational Feedback Control for a Class of Industrial Processes. ACTA AUTOMATICA SINICA, 2015, 41(10): 1754-1761. doi: 10.16383/j.aas.2015.c150061
Citation: FAN Jia-Lu, ZHANG Ye-Wei, CHAI Tian-You. Optimal Operational Feedback Control for a Class of Industrial Processes. ACTA AUTOMATICA SINICA, 2015, 41(10): 1754-1761. doi: 10.16383/j.aas.2015.c150061

一类工业过程运行反馈优化控制方法

doi: 10.16383/j.aas.2015.c150061
基金项目: 

国家自然科学基金 (61333012, 61304028) 和国家高技术研究发 展计划 (863 计划) (2015AA043802)资助

详细信息
    作者简介:

    张也维 2014 年获得东北大学控制理论 与控制工程系硕士学位. 主要研究方向 为工业过程运行控制. E-mail: yewei.zhang@faw-vw.com

    通讯作者:

    范家璐 东北大学流程工业综合自动化 国家重点实验室副教授. 2011 年获浙江 大学控制科学与工程系博士学位(与美 国宾夕法尼亚州立大学联合培养). 主要 研究方向为工业过程运行控制、工业无 线传感器网络与移动社会网络. 本文通 信作者. E-mail: fanjialu@gmail.com

Optimal Operational Feedback Control for a Class of Industrial Processes

Funds: 

Supported by National Natural Science Foundations of China (61333012, 61304028) and National High Technology Research and development Program (863 Program) (2015AA043802)

  • 摘要: 为了克服流程工业运行优化中控制回路闭环系统的动态误差对运行优化性能的影响,本文针 对一类工业过程提出了使运行指标实际值与目标值偏差和控制回路输出与设定值跟踪误差的二次性能 指标极小化的运行优化反馈控制方法. 该方法由运行层设定值反馈控制和回路控制层设定值跟踪控制组成,其中设定值反馈控制采用基于LMI的 模型预测控制,回路控制采用衰减率可调的带有积分项的状态反馈调节律. 本文给出了保证运行优化反馈控制闭环系统渐近稳定的充分条件,并开展了浮选过程运行优化反馈控制仿 真实验,实验结果表明所提方法的有效性.
  • [1] Cutler C R, Perry R T. Real time optimization with multivariable control is required to maximize profits. Computers & Chemical Engineering, 1983, 7(5): 663-667
    [2] Dai Wei, Chai Tian-You. Data-driven optimal operational control of complex grinding processes. Acta Automatica Sinica, 2014, 40(9): 2005-2014(代伟, 柴天佑. 数据驱动的复杂磨矿过程运行优化控制方法. 自动化学报, 2014, 40(9): 2005-2014)
    [3] Chai Tian-You. Challenges of optimal control for plant-wide production processes in terms of control and optimization theories. Acta Automatica Sinica, 2009, 35(6): 641-648(柴天佑. 生产制造全流程优化控制对控制与优化理论方法的挑战. 自动化学报, 2009, 35(6): 641-648)
    [4] Chai T Y, Ding J L, Wu F H. Hybrid intelligent control for optimal operation of shaft furnace roasting process. Control Engineering Practice, 2011, 19(3): 264-275
    [5] Chai Tian-You, Ding Jin-Liang, Wang Hong, Su Chun-Yi. Hybrid intelligent optimal control method for operation of complex industrial processes. Acta Automatica Sinica, 2008, 34(5): 505-515(柴天佑, 丁进良, 王宏, 苏春翌. 复杂工业过程运行的混合智能优化控制方法. 自动化学报, 2008,34(5): 505-515)
    [6] Skogestad S. Self-optimizing control: the missing link between steady-state optimization and control. Computers & Chemical Engineering, 2000, 24(2-7): 569-575
    [7] Skogestad S. Plantwide control: the search for the self-optimizing control structure. Journal of Process Control, 2000, 10(5): 487-507
    [8] Chai T Y, Zhao L, Qiu J B, Liu F Z, Fan J L. Integrated network-based model predictive control for setpoints compensation in industrial processes. IEEE Transactions on Industrial Informatics, 2013, 9(1): 417-426
    [9] Yin S, Luo H, Ding S X. Real-time implementation of fault-tolerant control systems with performance optimization. IEEE Transactions on Industrial Electronics, 2014, 61(5): 2402-2411
    [10] Rahbar K, Xu J, Zhang R. Real-time energy storage management for renewable integration in microgrid: an off-line optimization approach. IEEE Transactions on Smart Grid, 2015, 6(1): 124-134
    [11] Chai Tian-You. Operational optimization and feedback control for complex industrial processes. Acta Automatica Sinica, 2013, 39(11): 1744-1757(柴天佑. 复杂工业过程运行优化与反馈控制. 自动化学报, 2013,39(11): 1744-1757)
    [12] Li H X, Guan S P. Hybrid intelligent control strategy. Supervising a DCS-controlled batch process. IEEE Control Systems, 2001, 21(3): 36-48
    [13] Wang Z J, Wu Q D, Chai T Y. Optimal-setting control for complicated industrial processes and its application study. Control Engineering Practice, 2004, 12(1): 65-74
    [14] Yang C H, Gui W H, Kong L S, Wang Y L. A two-stage intelligent optimization system for the raw slurry preparing process of alumina sintering production. Engineering Applications of Artificial Intelligence, 2009, 22(4-5): 786-795
    [15] Wang T, Gao H J, Qiu J B. A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control. IEEE Transactions on Neural Networks and Learning Systems, 2015, (99), DOI: 10.1109/TNNLS.2015.2411671
    [16] Boyd S, El Ghaoui L, Feron E, Balakrishnan V. Linear Matrix Inequalities in Systems and Control Theory. USA: SIAM Studies in Applied Mathematics, 1994
    [17] Harris C C. Multiphase models of flotation machine behaviour. International Journal of Mineral Processing, 1978, 5(2): 107-129
    [18] Thornton A J. The Application and Future Development of Adaptive Control to the Froth Flotation Process [Ph.D. dissertation], The University of Queensland, Australia, 2015.
    [19] Maldonado M, Sbarbaro D, Lizama E. Optimal control of a rougher flotation process based on dynamic programming. Minerals Engineering, 2007, 20(3): 221-232
    [20] Liu F Z, Gao H J, Qiu J B, Yin S, Fan J L, Chai T Y. Networked multirate output feedback control for setpoints compensation and its application to rougher flotation process. IEEE Transactions on Industrial Electronics, 2014, 61(1): 460-468
  • 加载中
计量
  • 文章访问数:  1806
  • HTML全文浏览量:  155
  • PDF下载量:  1603
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-30
  • 修回日期:  2015-07-03
  • 刊出日期:  2015-10-20

目录

    /

    返回文章
    返回