[1]
|
Zhang Xiao-Jian, Wang Miao, Meng Xiao-Feng. An accurate method for mining top-k frequent pattern under differential privacy. Journal of Computer Research and Development, 2014, 51(1): 104-114(张啸剑, 王淼, 孟小峰. 差分隐私保护下一种精确挖掘top-k频繁模式方法. 计算机研究与发展, 2014, 51(1): 104-114)
|
[2]
|
Mao Yu-Xing, Shi Bai-Le. An incremental method for mining generalized association rules based on extended canonical-order tree. Journal of Computer Research and Development, 2012, 49(3): 598-606(毛宇星, 施伯乐. 基于扩展自然序树的概化关联规则增量挖掘方法. 计算机研究与发展, 2012, 49(3): 598-606)
|
[3]
|
Wu Feng, Zhong Yan, Wu Quan-Yuan. Mining frequent patterns over data stream under the time decaying model. Acta Automatica Sinica, 2010, 36(5): 674-684(吴枫, 仲妍, 吴泉源. 基于时间衰减模型的数据流频繁模式挖掘. 自动化学报, 2010, 36(5): 674-684)
|
[4]
|
Li Hai-Feng, Zhang Ning, Zhu Jian-Ming, Cao Huai-Hu. Frequent itemset mining over time-sensitive streams. Chinese Journal of Computers, 2012, 35(11): 2283-2293(李海峰, 章宁, 朱建明, 曹怀虎. 时间敏感数据流上的频繁项集挖掘算法. 计算机学报, 2012, 351333(11): 2283-2293)
|
[5]
|
Pan Yun-He, Wang Jin-Long, Xu Cong-Fu. State-of-the-art on frequent pattern mining in data streams. Acta Automatica Sinica, 2006, 32(4): 594-602(潘云鹤, 王金龙, 徐从富. 数据流频繁模式挖掘研究进展. 自动化学报, 2006, 32(4): 594-602)
|
[6]
|
Chen Yin, Shan Si-Qing, Liu Lu, Li Yan. Minimum-redundant and lossless association rule-set representation. Acta Automatica Sinica, 2008, 34(12): 1490-1496(陈茵, 闪四清, 刘鲁, 李岩. 最小冗余的无损关联规则集表述. 自动化学报, 2008, 34(12): 1490-1496)
|
[7]
|
Krishnamoorthy S. Pruning strategies for mining high utility itemsets. Expert Systems with Applications, 2015, 42(5): 2371-2381
|
[8]
|
Lan G C, Hong T P, Tseng V S, Wang S L. Applying the maximum utility measure in high utility sequential pattern mining. Expert Systems with Applications, 2014, 41(11): 5071-5081
|
[9]
|
Lin C W, Hong T P, Lan G C, Wong J W, Lin W Y. Efficient updating of discovered high-utility itemsets for transaction deletion in dynamic databases. Advanced Engineering Informatics, 2015, 29(1): 16-27
|
[10]
|
Lin C W, Lan G C, Hong T P. Mining high utility itemsets for transaction deletion in a dynamic database. Intelligent Data Analysis , 2015, 19(1): 43-255
|
[11]
|
Manike C, Om H. Sliding-window based method to discover high utility patterns from data streams. Computational Intelligence in Data Mining. India: Springer, 2015. 173-184
|
[12]
|
Yun U, Ryang H, Ryu K H. High utility itemset mining with techniques for reducing overestimated utilities and pruning candidates. Expert Systems with Applications, 2014, 41(8): 3861-3878
|
[13]
|
Zihayat M, An A J. Mining top-k high utility patterns over data streams. Information Sciences, 2014, 285: 138-161
|
[14]
|
Fournier-Viger P, Wu C W, Zida S, Tseng V S. FHM: faster high-utility itemset mining using estimated utility co-occurrence pruning. Foundations of Intelligent Systems. Switzerland: Springer, 2014. 83-92
|
[15]
|
Yao H, Hamilton H J, Butz G J. A foundational approach to mining itemset utilities from databases. In: Proceedings of the 4th SIAM International Conference on Data Mining (ICDM 2004). Lake Buena Vista, FL, United States: Springer, 2004. 482-486
|
[16]
|
Liu Y, Liao W K, Choudhary A. A two-phase algorithm for fast discovery of high utility itemsets. Advances in Knowledge Discovery and Data Mining: Proceedings of the 9th Pacific-Asia Conference, PAKDD 2005, Hanoi, Vietnam. Berlin Heidelberg: Springer-Verlag, 2005. 689-695
|
[17]
|
Erwin A, Gopalan R P, Achuthan N R. CTU-mine: an efficient high utility itemset mining algorithm using the pattern growth approach. In: Proceedings of the 7th IEEE International Conference on Computer and Information Technology. Aizu-Wakamatsu, Fukushima, Japan: IEEE, 2007. 71-76
|
[18]
|
Ahmed C F, Tanbeer S K, Jeong B S, Lee Y K. Efficient tree structures for high utility pattern mining in incremental databases. IEEE Transactions on Knowledge and Data Engineering , 2009, 21(12): 1708-1721
|
[19]
|
Tseng V S, Shie B E, Wu C W, Yu P S. Efficient algorithms for mining high utility itemsets from transactional databases. IEEE Transactions on Knowledge and Data Engineering , 2013, 25(8): 1772-1786
|
[20]
|
Tseng V S, Wu C W, Shie B E, Yu P S. UP-growth: an efficient algorithm for high utility itemset mining. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington D.C., United States: ACM, 2010. 253-262
|
[21]
|
Liu M C, Qu J F. Mining high utility itemsets without candidate generation. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management (CIKM 2012). Maui, HI, United States: Association for Computing Machinery, 2012. 55-64
|