2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多传感器的大口径器件自动对准策略

卢金燕 徐德 覃政科 王鹏 任超

卢金燕, 徐德, 覃政科, 王鹏, 任超. 基于多传感器的大口径器件自动对准策略. 自动化学报, 2015, 41(10): 1711-1722. doi: 10.16383/j.aas.2015.c150053
引用本文: 卢金燕, 徐德, 覃政科, 王鹏, 任超. 基于多传感器的大口径器件自动对准策略. 自动化学报, 2015, 41(10): 1711-1722. doi: 10.16383/j.aas.2015.c150053
LU Jin-Yan, XU De, QIN Zheng-Ke, WANG Peng, REN Chao. An Automatic Alignment Strategy of Large Diameter Components with a Multi-sensor System. ACTA AUTOMATICA SINICA, 2015, 41(10): 1711-1722. doi: 10.16383/j.aas.2015.c150053
Citation: LU Jin-Yan, XU De, QIN Zheng-Ke, WANG Peng, REN Chao. An Automatic Alignment Strategy of Large Diameter Components with a Multi-sensor System. ACTA AUTOMATICA SINICA, 2015, 41(10): 1711-1722. doi: 10.16383/j.aas.2015.c150053

基于多传感器的大口径器件自动对准策略

doi: 10.16383/j.aas.2015.c150053
基金项目: 

国家自然科学基金(61379097, 61100098)资助

详细信息
    作者简介:

    卢金燕 中国科学院自动化研究所博士 研究生. 2011 年获得北京航空航天大学 计算机科学与技术专业硕士学位. 主要 研究方向为位姿检测, 视觉测量, 机器人 控制. E-mail: jinyan.lu@ia.ac.cn

    通讯作者:

    徐德 中国科学院自动化研究所研究 员. 主要研究方向为机器人和自动化, 视 觉测量, 视觉控制, 智能控制, 焊缝跟踪, 视觉定位, 显微视觉, 微装配. 本文通信 作者. E-mail: de.xu@ia.ac.cn

An Automatic Alignment Strategy of Large Diameter Components with a Multi-sensor System

Funds: 

Supported by National Natural Science Foundation of China (61379097, 61100098)

  • 摘要: 针对大口径器件的装配, 基于搭建的实验平台, 提出了一种多传感器反馈的分阶段自动对准策略, 实现了大口径器件的六自由度位姿对准. 对准过程中, 在机器人末端远离装配位置时, 采用视觉测量安装框架的相对位姿进行粗对准; 在机器人末端接近装配位置时, 由于安装框架尺寸大导致视觉不能获得完整的框架相对于大口径器件的位姿, 所以采用视觉采集安装框架的局部图像, 利用基于图像的控制消除绕Z轴的旋转误差和沿X、Y轴的平移误差, 采用多个激光测距传感器测量相对距离, 利用基于位置的控制消除沿Z轴的平移误差和绕X、Y轴的旋转误差, 实现大口径器件与安装框架的精对准. 采用增量式PI控制算法, 实现了对准的运动控制. 实验结果验证了所提方法的有效性.
  • [1] Bartenwerfer M, Diederichs C, Fatikow S. Automated robotic assembly for a micro-cartridge system inside the scanning electron microscope. In: Proceedings of the 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China: IEEE, 2014. 5197-5202
    [2] Park W, Chirikjian G G. An assembly automation approach to alignment of noncircular projections in electron microscopy. IEEE Transactions on Automation Science and Engineering, 2014, 11(3): 668-679
    [3] Zhang B, Wang J J, Rossano G, Martinez C, Kock S. Vision-guided robot alignment for scalable, flexible assembly automation. In: Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics. Karon Beach, Phuket, Thailand: IEEE, 2011. 944-951
    [4] Song H C, Kim Y L, Song J B. Automated guidance of peg-in-hole assembly tasks for complex-shaped parts. In: Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, USA: IEEE, 2014. 4517-4522
    [5] Chang W C, Shao C K. Hybrid fuzzy control of an eye-to-hand robotic manipulator for autonomous assembly tasks. In: Proceedings of the 2010 SICE Annual Conference. Taipei, China: IEEE, 2010. 408-414
    [6] Kwon S, Jeong H, Hwang J. Kalman filter-based coarse-to-fine control for display visual alignment systems. IEEE Transactions on Automation Science and Engineering, 2012, 9(3): 621-628
    [7] Makita S, Kadono Y, Maeda Y, Miura S, Kunioka I, Yoshida K. Manipulation of submillimeter-sized electronic parts using force control and vision-based position control. In: Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, USA: IEEE, 2007. 1834-1839
    [8] Thomas U, Molkenstruck S, Iser R, Wahl F M. Multi sensor fusion in robot assembly using particle filters. In: Proceedings of the 2007 IEEE International Conference on Robotics and Automation. Roma, Italy: IEEE, 2007. 3837-3843
    [9] Skotheim O, Lind M, Ystgaard P, Fjerdingen S A. A flexible 3D object localization system for industrial part handling. In: Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Algarve, Portugal: IEEE, 2012. 3326-3333
    [10] Liu Z, Xie Y, Xu J, Chen K. Laser tracker based robotic assembly system for large scale peg-hole parts. In: Proceedings of the 4th Annual International Conference on Cyber Technology in Automation, Control and Intelligent Systems. Hong Kong, China: IEEE, 2014. 574-578
    [11] Yamataka M, Kuga T, Takayama T, Furukawa M, Ishida J. Robot assembly system for LCD TV using cooperative force control. In: Proceedings of the 34th Annual Conference on Industrial Electronics. Orlando, USA: IEEE, 2008. 3443- 3448
    [12] Gil M, Lee S, Kang M S, Shin K, Han C S. Sensor device for intuitively manipulating the heavy material-handling robot. In: Proceedings of the 2014 Aunnal International Conference on Cyber Technology in Automation, Control and Intelligent Systems. Hong Kong, China: IEEE, 2014. 527-530
    [13] Kim Y K, Kim Y, Kim K S, Kim S, Jung Y S, Jang I G, Kim E H. Developing a robust sensing system for remote relative 6-DOF motion using 1-D laser sensors. In: Proceedings of the 2012 IEEE International Conference on Systems. Vancouver, Canada: IEEE, 2012. 1-4
    [14] Kim Y, Kim Y K, Kim K S, Kim S, Kwak B M, Jung Y S, Jang I G, Kim E H. Structure optimization of 1-D laser sensors assembly for robust 6-DOF measurement. In: Proceedings of the 2012 IEEE International Conference on Systems. Vancouver, Canada: IEEE, 2012. 1-4
    [15] Ulrich M, Wiedemann C, Steger C. Combining scale-space and similarity-based aspect graphs for fast 3D object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10): 1902-1914
    [16] Tan Min, Xu De, Hou Zeng-Guang, Wang Shuo, Cao Zhi-Qiang. Advanced Robot Control. Beijing: Higher Education Press, 2007. 26-27(谭民, 徐德, 侯增广, 王硕, 曹志强. 先进机器人控制. 北京: 高等教育出版社, 2007. 26-27)
    [17] Zhang Z Y. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334
  • 加载中
计量
  • 文章访问数:  1613
  • HTML全文浏览量:  63
  • PDF下载量:  1589
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-27
  • 修回日期:  2015-05-23
  • 刊出日期:  2015-10-20

目录

    /

    返回文章
    返回