[1]
|
Borrás J, Moreno A, Valls A. Intelligent tourism recommender systems: a survey. Expert Systems with Applications, 2014, 41(16): 7370-7389
|
[2]
|
Qu M, Zhu H S, Liu J M, Liu G N, Xiong H. A cost-effective recommender system for taxi drivers. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014. 45-54
|
[3]
|
Chung N, Koo C, Kim J K. Extrinsic and intrinsic motivation for using a booth recommender system service on exhibition attendees' unplanned visit behavior. Computers in Human Behavior, 2014, 30: 59-68
|
[4]
|
Gao M, Wu Z F, Jiang F. Userrank for item-based collaborative filtering recommendation. Information Processing Letters, 2011, 111(9): 440-446
|
[5]
|
Li Cong, Luo Zhi-Gang. A metadata-enhanced variational bayesian matrix factorization model for robust collaborative recommendation. Acta Automatica Sinica, 2011, 37(9): 1067-1076(李聪, 骆志刚. 用于鲁棒协同推荐的元信息增强变分贝叶斯矩阵分解模型. 自动化学报, 2011, 37(9): 1067-1076)
|
[6]
|
Li C, Luo Z G. Detection of shilling attacks in collaborative filtering recommender systems. In: Proceedings of the 2011 International Conference of Soft Computing and Pattern Recognition (SoCPaR). Dalian, China: IEEE, 2011. 190-193
|
[7]
|
Mobasher B, Burke R, Williams C, Bhaumik R. Analysis and detection of segment-focused attacks against collaborative recommendation. In: Proceeding of the 7th International Workshop on Knowledge Discovery on the Web, Advances in Web Mining and Web Usage Analysis. Berlin, Heidelberg: Springer, 2006. 96-118
|
[8]
|
Seminario C E, Wilson D C. Attacking item-based recommender systems with power items. In: Proceedings of the 8th ACM Conference on Recommender Systems. New York: ACM, 2014. 57-64
|
[9]
|
Xia H, Fang B, Gao M, Ma H, Tang Y Y, Wen J. A novel item anomaly detection approach against shilling attacks in collaborative recommendation systems using the dynamic time interval segmentation technique. Information Sciences, 2015, 306: 150-165
|
[10]
|
Zhang Z, Kulkarni S R. Detection of shilling attacks in recommender systems via spectral clustering. In: Proceedings of the 17th International Conference on Information Fusion (FUSION). Salamanca: IEEE, 2014. 1-8
|
[11]
|
Gunes I, Kaleli C, Bilge A, Polat H. Shilling attacks against recommender systems: a comprehensive survey. Artificial Intelligence Review, 2014, 42(4): 767-799
|
[12]
|
Wu Zhi-Ang, Wang You-Quan, Cao Jie. A survey on shilling attack models and detection techniques for recommender systems. Chinese Science Bulletin, 2014, 59(7): 551-560(伍之昂, 王有权, 曹杰. 推荐系统托攻击模型与检测技术. 科学通报, 2014, 59(7): 551-560)
|
[13]
|
Wu Zhi-Ang, Zhuang Yi, Wang You-Quan, Cao Jie. Shilling attack detection based on feature selection for recommendation systems. Acta Electronica Sinica, 2012, 40(8): 1687-1693(伍之昂, 庄毅, 王有权, 曹杰. 基于特征选择的推荐系统托攻击检测算法. 电子学报, 2012, 40(8): 1687-1693)
|
[14]
|
Lam S K, Riedl J. Shilling recommender systems for fun and profit. In: Proceedings of the 13th International Conference on World Wide Web. New York: ACM, 2004. 393-402
|
[15]
|
Oestreicher-Singer G, Sundararajan A. Recommendation networks and the long tail of electronic commerce. MIS Quarterly, 2012, 36(1): 65-84
|
[16]
|
Yin H Z, Cui B, Li J, Yao J J, Chen C. Challenging the long tail recommendation. Proceedings of the VLDB Endowment, 2012, 5(9): 896-907
|
[17]
|
Li Cong, Luo Zhi-Gang. Detecting shilling attacks in recommender systems based on non-random-missing mechanism. Acta Automatica Sinica, 2013, 39(10): 1681-1690(李聪, 骆志刚. 基于数据非随机缺失机制的推荐系统托攻击探测. 自动化学报, 2013, 39(10): 1681-1690)
|
[18]
|
Li Cong, Luo Zhi-Gang, Shi Jin-Long. An unsupervised algorithm for detecting shilling attacks on recommender systems. Acta Automatica Sinica, 2011, 37(2): 160-167(李聪, 骆志刚, 石金龙. 一种探测推荐系统托攻击的无监督算法. 自动化学报, 2011, 37(2): 160-167)
|
[19]
|
Chirita P A, Nejdl W, Zamfir C. Preventing shilling attacks in online recommender systems. In: Proceedings of the 7th Annual ACM International Workshop on Web Information and Data Management. New York: ACM, 2005. 67-74
|
[20]
|
Burke R, Mobasher B, Williams C, Bhaumik R. Classification features for attack detection in collaborative recommender systems. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2006. 542-547
|
[21]
|
Mehta B, Nejdl W. Unsupervised strategies for shilling detection and robust collaborative filtering. User Modeling and User-Adapted Interaction, 2009, 19(1-2): 65-97
|
[22]
|
Wu Z, Wu J J, Cao J, Tao D C. HySAD: a semi-supervised hybrid shilling attack detector for trustworthy product recommendation. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2012. 985-993
|
[23]
|
Zipf G K. Selected studies of the principle of relative frequency in language. Language, 1932, 9(1): 89-92
|
[24]
|
Zhou Tao, Han Xiao-Pu, Yan Xiao-Yong, Yang Zi-Mo, Zhao Zhi-Dan, Wang Bing-Hong. Statistical mechanics on temporal and spatial activities of human. Journal of University of Electronic Science and Technology of China, 2013, 42(4): 481-540(周涛, 韩筱璞, 闫小勇, 杨紫陌, 赵志丹, 汪秉宏. 人类行为时空特性的统计力学. 电子科技大学学报, 2013, 42(4): 481-540)
|
[25]
|
Lv L, Zhang Z K, Zhou T. Zipf's law leads to heaps' law: analyzing their relation in finite-size systems. PloS One, 2010, 5(12): e14139
|
[26]
|
Mobasher B, Burke R, Bhaumik R, Sandvig J J. Attacks and remedies in collaborative recommendation. IEEE Intelligent Systems, 2007, 22(3): 56-63
|
[27]
|
Chen J, Luo D L, Mu F X. An improved ID3 decision tree algorithm. In: Proceedings of the 4th International Conference on Computer Science & Education. Nanning: IEEE, 2009. 127-130
|