[1]
|
Zhang Gui-Mei, Zhang Song, Chu Jun. A new object detection algorithm using local contour features. Acta Automatica Sinica, 2014, 40(10): 2346-2355 (张桂梅, 张松, 储珺. 一种新的基于局部轮廓特征的目标检测方法. 自动化学报, 2014, 40(10): 2346-2355)
|
[2]
|
Arbelaez P, Pont-Tuset J, Barron J T, Margues F, Malik J. Multiscale combinatorial grouping. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE, 2014. 328-335
|
[3]
|
Tang Qi-Ling, Sang Nong, Liu Hai-Hua, Chen Xin-Hao. Detecting natural image contours by combining visual perception and machine learning. Science China Informationis, 2013, 43(9): 1124-1135 (唐奇伶, 桑农, 刘海华, 陈心浩. 视觉感知结合学习的自然图像轮廓检测. 中国科学: 信息科学, 2013, 43(9): 1124-1135)
|
[4]
|
Cai Jia-Xin, Feng Guo-Can, Tang Xin, Luo Zhi-Hong. Human action recognition based on local image contour and random forest. Acta Optica Sinica, 2014, 34(10): 1015006-1 -1015006-10 (蔡加欣, 冯国灿, 汤鑫, 罗志宏. 基于局部轮廓和随机森林的人体行为识别. 光学学报, 2014,34(10): 1015006-1-1015006-10)
|
[5]
|
Arbelaez P, Maire M, Fowlkes C, Malik J. Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898-916
|
[6]
|
Dollár P, Zitnick C L. Structured forests for fast edge detection. In: Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, Australia: IEEE, 2013. 1841-1848
|
[7]
|
Dollár P, Zitnick C L. Fast edge detection using structured forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(8): 1558-1570
|
[8]
|
Leordeanu M, Sukthankar R, Sminchisescu C. Efficient closed-form solution to generalized boundary detection. In: Proceedings of the 12th European Conference on Computer Vision. Florence, Italy: Springer, 2012. 516-529
|
[9]
|
Xu Yu-Hua, Tian Zun-Hua, Zhang Yue-Qiang, Zhu Xian-Wei, Zhang Xiao-Hu. Adaptively combining color and depth for human body contour tracking. Acta Automatica Sinica, 2014, 40(8): 1623-1634 (徐玉华, 田尊华, 张跃强, 朱宪伟, 张小虎. 自适应融合颜色和深度信息的人体轮廓跟踪. 自动化学报, 2014,40(8): 1623-1634)
|
[10]
|
Sundberg P, Brox T, Maire M, Arbelaez P, Malik J. Occlusion boundary detection and figure/ground assignment from optical flow. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE, 2011. 2233-2240
|
[11]
|
Stein A N, Hebert M. Occlusion boundaries from motion: low-level detection and mid-level reasoning. International Journal of Computer Vision, 2009, 82(3): 325-357
|
[12]
|
Tünnermann J, Mertsching B. Region-based artificial visual attention in space and time. Cognitive Computation, 2014, 6(1): 125-143
|
[13]
|
Adelson E H, Bergen J R. Spatiotemporal energy models for the perception of motion. Journal of Optical Society of America. A, Optics and Image Science, 1985, 2(2): 284-299
|
[14]
|
Cannons K J, Wildes R P. The applicability of spatiotemporal oriented energy features to region tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 36(4): 784-796
|
[15]
|
He X M, Yuille A. Occlusion boundary detection using pseudo-depth. In: Proceedings of the 11th European Conference on Computer Vision. Heraklion, Greece: Springer, 2010. 539-552
|
[16]
|
Chakraborty B, Holte M B, Moeslund T B, González J. Selective spatio-temporal interest points. Computer Vision and Image Understanding, 2012, 116(3): 396-410
|
[17]
|
Wang Y Y, Shanbhag S J, Fischer B J, Peña J L. Population-wide bias of surround suppression in auditory spatial receptive fields of the owl's midbrain. The Journal of Neuroscience, 2012, 32(31): 10470-10478
|
[18]
|
Carandini M, Heeger D J. Normalization as a canonical neural computation. Nature Reviews Neuroscience, 2011, 13(1): 51-62
|
[19]
|
Grigorescu C, Petkov N, Westenberg M A. Contour detection based on nonclassical receptive field inhibition. IEEE Transactions on Image Processing, 2003, 12(7): 729-739
|
[20]
|
Sang Nong, Tang Qi-Ling, Zhang Tian-Xu. Countour detection based on inhibition of primary visual cortex. Journal of Infrared Millimeter Waves, 2007, 26(1): 47-51 (桑农, 唐奇伶, 张天序. 基于初级视皮层抑制的轮廓检测方法. 红外与毫米波学报, 2007, 26(1): 47-51)
|
[21]
|
Goris R L T, Movshon J A, Simoncelli E P. Partitioning neuronal variability. Nature Neuroscience, 2014, 17(6): 858- 865
|
[22]
|
Yuval-Greenberg S, Heeger D J. Continuous flash suppression modulates cortical activity in early visual cortex. The Journal of Neuroscience, 2013, 33(23): 9635-9643
|
[23]
|
Tsui J M G, Hunter J N, Born R T, Pack C C. The role of V1 surround suppression in MT motion integration. Journal of Neurophysiology, 2010, 103(6): 3123-3138
|
[24]
|
Criminisi A, Shotton J, Konukoglu E. Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Foundations and Trends in Computer Graphics and Vision, 2012, 7(2-3): 81-227
|
[25]
|
Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Machine Learning, 2006, 63(1): 3-42
|
[26]
|
Sargin M E, Bertelli L, Manjunath B S, Rose K. Probabilistic occlusion boundary detection on spatio-temporal lattices. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 560 -567
|