2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于关系图特征的微博水军发现方法

程晓涛 刘彩霞 刘树新

程晓涛, 刘彩霞, 刘树新. 基于关系图特征的微博水军发现方法. 自动化学报, 2015, 41(9): 1533-1541. doi: 10.16383/j.aas.2015.c140906
引用本文: 程晓涛, 刘彩霞, 刘树新. 基于关系图特征的微博水军发现方法. 自动化学报, 2015, 41(9): 1533-1541. doi: 10.16383/j.aas.2015.c140906
CHENG Xiao-Tao, LIU Cai-Xia, LIU Shu-Xin. Graph-based Features for Identifying Spammers in Microblog Networks. ACTA AUTOMATICA SINICA, 2015, 41(9): 1533-1541. doi: 10.16383/j.aas.2015.c140906
Citation: CHENG Xiao-Tao, LIU Cai-Xia, LIU Shu-Xin. Graph-based Features for Identifying Spammers in Microblog Networks. ACTA AUTOMATICA SINICA, 2015, 41(9): 1533-1541. doi: 10.16383/j.aas.2015.c140906

基于关系图特征的微博水军发现方法

doi: 10.16383/j.aas.2015.c140906
基金项目: 

国家高技术研究发展计划(863计划)(2011AA010604),国家科技重大专项(2013ZX03006002)资助

详细信息
    作者简介:

    刘彩霞 国家数字交换系统工程技术研究中心副教授,博士.主要研究方向为无线移动通信网络,新型网络体系结构,在线社交网络.E-mail:lcxtxr@163.com

    刘树新 国家数字交换系统工程技术研究中心博士研究生.主要研究方向为移动通信网络,复杂网络.E-mail:liushuxin11@gmail.com

    通讯作者:

    程晓涛 国家数字交换系统工程技术研究中心硕士研究生.2012年获得南京邮电大学通信工程专业学士学位.主要研究方向为社交网络数据挖掘,机器学习.本文通信作者.E-mail:chengxt90@gmail.com

Graph-based Features for Identifying Spammers in Microblog Networks

Funds: 

Supported by National High Technology Research and Development Program of China (863 Program) (2011AA010604), and National Science and Technology Major Project (2013ZX03006002)

  • 摘要: 随着网络水军策略的不断演变,传统的基于用户内容和用户行为的发现方法 对新型社交网络水军的识别效果不断下降.水军用户可以变更自身的博文内容与转发行为, 但无法改变与网络中正常用户的连结关系,形成的结构图具有一定的稳定性, 因此,相对于用户的内容特征与行为特征,用户关系特征在水军识别中具有更强的鲁棒性与准确度. 由此,本文提出一种基于用户关系图特征的微博水军账号识别方法. 实验中通过爬虫程序抓取新浪微博网络数据; 然后,提取用户的属性特征、时间特征、关系图特征;最后,利用三种机器学习算法对用户进行分类预测. 仿真结果表明,添加新特征后对水军账号的识别准确率、召回率提高5%以上, 从而验证了关系图特征在水军识别中的有效性.
  • [1] Almeida T A, Yamakami A. Content-based spam filtering. In: Proceedings of the 2010 International Joint Conference on Neural Networks. Barcelona: IEEE, 2010. 1-7
    [2] Zhang L, Zhu J B, Yao T S. An evaluation of statistical spam filtering techniques. ACM Transactions on Asian Language Information Processing, 2004, 3(4): 243-269
    [3] Cao Jian-Ping, Wang Hui, Xia You-Qing, Qiao Feng-Cai, Zhang Xin. Bi-path evolution model for online topic model based on LDA. Acta Automatica Sinica, 2014, 40(12): 2877-2886(曹建平, 王晖, 夏友清, 乔凤才, 张鑫. 基于LDA的双通道在线主题演化模型. 自动化学报, 2014, 40(12): 2877-2886)
    [4] Liu Hong-Yu, Zhao Yan-Yan, Qin Bing, Liu Ting. Comment target extraction and sentiment classification. Journal of Chinese Information Processing, 2006, 24(1): 84-88, 122(刘鸿宇, 赵妍妍, 秦兵, 刘挺. 评价对象抽取及其倾向性分析. 中文信息学报, 2006, 24(1): 84-88, 122)
    [5] Jindal N, Liu B, Lim E P. Finding unusual review patterns using unexpected rules. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management. New York, United States: ACM, 2010. 1549-1552
    [6] Ott M, Choi Y, Cardie C, Hancock J T. Finding deceptive opinion spam by any stretch of the imagination. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1. Stroudsburg, PA, USA: ACL, 2011. 309-319
    [7] Niu Y, Wang Y M, Chen H, Ma M, Hsu F. A quantitative study of forum spamming using context-based analysis. In: Proceedings of the 2007 Network and Distributed System Security Symposium. San Diego, United States: ISOC, 2007. 1-14
    [8] Mao Jia-Xi, Liu Yi-Qun, Zhang Min, Ma Shao-Ping. Social influence analysis for micro-blog user based on user behavior. Chinese Journal of Computers, 2014, 37(4): 791-799 (毛佳昕, 刘奕群, 张敏, 马少平. 基于用户行为的微博用户社会影响力分析. 计算机学报, 2014, bf 37(4): 791-799)
    [9] Hayati P, Chai K, Potdar V. Computational Science and Its Applications---ICCSA2010. Berlin, Heidelberg: Springer, 2010. 351-360
    [10] Song J, Lee S, Kim J. Recent Advances in Intrusion Detection. Berlin. Heidelberg: Springer, 2011. 301-317
    [11] Murmann A J. Enhancing Spammer Detection in online Social Networks with Trust-based Metrics [Master dissertation], San Jose State University, United States, 2009.
    [12] Xu Zhi-Ming, Li Dong, Liu Ting, Li Sheng, Wang Gang, Yuan Shu-Lun. Measuring similarity between microblog users and its application. Chinese Journal of Computers, 2014, 37(1): 207-218 (徐志明, 李栋, 刘挺, 李生, 王刚, 袁树仑. 微博用户的相似性度量及其应用. 计算机学报, 2014, 37(1): 207-218)
    [13] Yang C, Harkreader R, Gu G F. Empirical evaluation and new design for fighting evolving Twitter spammers. IEEE Transactions on Information Forensics and Security, 2013, 8(8): 1280-1293
    [14] Hu Yun, Wang Chong-Jun, Wu Jun, Xie Jun-Yuan, Li Hui. Overlapping community discovery and global representation on microblog network. Journal of Software, 2014, 25(12): 2824-2836(胡云, 王崇骏, 吴骏, 谢俊元, 李慧. 微博网络上的重叠社群发现与全局表示. 软件学报, 2014, 25(12): 2824-2836)
    [15] Zhou Xiao-Ping, Liang Xun, Zhang Hai-Yan. User community detection on micro-blog using R-C model. Journal of software, 2014, 25(12): 2808-2823(周小平, 梁循, 张海燕. 基于R-C模型的微博用户社区发现. 软件学报, 2014, 25(12): 2808-2823)
    [16] Lin C F, He J H, Zhou Y, Yang X K, Chen K, Song L. Analysis and identification of spamming behaviors in Sina Weibo microblog. In: Proceedings of the 7th Workshop on Social Network Mining and Analysis. Chicago, United States: ACM, 2013: Article No.5
    [17] Fu Ju-Lei, Liu Wen-Li, Zheng Xiao-Long, Fan Ying, Wang Shou-Yang. Analyzing the characteristics of "East Turkistan" activities using text mining and network analysis. Acta Automatica Sinica, 2014, 40(11): 2456-2468(付举磊, 刘文礼, 郑晓龙, 樊瑛, 汪寿阳. 基于文本挖掘和网络分析的"东突"活动主要特征研究. 自动化学报, 2014, 40(11): 2456-2468)
    [18] Bai Lin-Gen, Chen Zhi-Qun, Wang Rong-Bo, Huang Xiao-Xi. Empirical analysis on K-core of microblog following relationship network. New Technology of Library and Information Service, 2013, 29(11): 68-74(白林根, 谌志群, 王荣波, 黄孝喜. 微博关注关系网络K-!核结构实证分析. 现代图书情报技术, 2013, bf 29(11): 68-74)
    [19] Chen K, Chen L, Zhu P D, Xiong Y S. Unveil the spams in Weibo. In: Proceedings of the 2013 IEEE and Internet of Things, IEEE International Conference on and IEEE Cyber, Physical and Social Computing, Green Computing and Communications. Beijing, China: IEEE, 2013: 916-922
    [20] Benevenuto F, Magno G, Rodrigues T, Almeida V. Detecting spammers on Twitter. In: Proceedings of the 7th Annual Collaboration, Electronic Messaging, Anti-Abuse and Spam Conference. Redmond, United States: CEAS, 2010: 12-21
    [21] Han Zhong-Ming, Xu Feng-Min, Duan Da-Gao. Probabilistic graphical model for identifying water army in microblogging system. Journal of Computer Research and Development, 2013, 50(Suppl): 180-186 (韩忠明, 许峰敏, 段大高. 面向微博的概率图水军识别模型. 计算机研究与发展, 2013, 50(Suppl): 180-186)
    [22] Mo Qian, Yang Ke. Overview of web spammer detection. Journal of Software, 2014, 25(7): 1505-1526 (莫倩, 杨珂. 网络水军识别研究. 软件学报, 2014, 25(7): 1505-1526)
    [23] Lu Hao, Wang Fei-Yue, Liu De-Rong, Zhang Nan, Zhao Xue-Liang. Analytics of lastest research progress in automation discipline based on academic knowledge mapping. Acta Automatica Sinica, 2014, 40(5): 994-1015 (陆浩, 王飞跃, 刘德荣, 张楠, 赵学亮. 基于科研知识图谱的近年国内外自动化学科发展综述. 自动化学报, 2014, 40(5): 994-1015)
  • 加载中
计量
  • 文章访问数:  3250
  • HTML全文浏览量:  277
  • PDF下载量:  1678
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-31
  • 修回日期:  2015-04-15
  • 刊出日期:  2015-09-20

目录

    /

    返回文章
    返回