2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于多尺度轮廓点空间关系特征的形状匹配方法

杨亚飞 郑丹晨 韩敏

杨亚飞, 郑丹晨, 韩敏. 一种基于多尺度轮廓点空间关系特征的形状匹配方法. 自动化学报, 2015, 41(8): 1405-1411. doi: 10.16383/j.aas.2015.c140896
引用本文: 杨亚飞, 郑丹晨, 韩敏. 一种基于多尺度轮廓点空间关系特征的形状匹配方法. 自动化学报, 2015, 41(8): 1405-1411. doi: 10.16383/j.aas.2015.c140896
YANG Ya-Fei, ZHENG Dan-Chen, HAN Min. A Shape Matching Method Using Spatial Features of Multi-scaled Contours. ACTA AUTOMATICA SINICA, 2015, 41(8): 1405-1411. doi: 10.16383/j.aas.2015.c140896
Citation: YANG Ya-Fei, ZHENG Dan-Chen, HAN Min. A Shape Matching Method Using Spatial Features of Multi-scaled Contours. ACTA AUTOMATICA SINICA, 2015, 41(8): 1405-1411. doi: 10.16383/j.aas.2015.c140896

一种基于多尺度轮廓点空间关系特征的形状匹配方法

doi: 10.16383/j.aas.2015.c140896
基金项目: 

国家重点基础研究发展计划(973计划) (2013CB430403), 国家自然科学基金(61374154), 中央高校基本科研业务费专项资金(DUT14RC(3)128)资助

详细信息
    作者简介:

    杨亚飞 大连理工大学电子信息与电气工程学部硕士研究生.主要研究方向为模式识别.E-mail:yangyafei@mail.dlut.edu.cn

A Shape Matching Method Using Spatial Features of Multi-scaled Contours

Funds: 

Supported by National Basic Research Program of China (973 Program) (2013CB430403), National Natural Science Foundation of China (61374154) and Fundamental Research Funds for the Central Universities (DUT14RC(3)128)

  • 摘要: 针对使用三角形区域表示描述子对相似形状进行匹配时,对微小形变比较敏感 以及区分剧烈变化的不相似形状时判别能力较弱的问题, 提出一种结合轮廓点空间关系特征的多尺度形状特征描述子.通过分析不同尺度下参考点与其他采样点之间的位置关系, 利用对应角度信息来对形状进行表示, 并在此基础上构造出一种新的形状特征描述子.本文所提特征提取方法能对形状的局部及全局信息更准确地描述, 具有较好的鲁棒性和判别能力.在形状特征匹配阶段, 利用轮廓点集顺序关系已知这一优势, 引入动态规划及形状复杂度分析的方法,分析形状间的匹配结果, 能够得到较好的形状匹配精度.通过对不同形状数据集行仿真实验, 证明本文方法能够有效地实现形状识别和检索.
  • [1] Loncaric S. A survey of shape analysis techniques. Pattern Recognition, 1998, 31(8): 983-1001
    [2] Bai X, Rao C, Wang X G. Shape vocabulary: a robust and efficient shape representation for shape matching. IEEE Transactions on Image Processing, 2014, 23(9): 3935-3949
    [3] Wang J W, Bai X, You X G, Latecki L J. Shape matching and classification using height functions. Pattern Recognition Letters, 2012, 33(2): 134-143
    [4] Han Min, Zheng Dan-Chen. Shape recognition based on fuzzy shape context. Acta Automatica Sinica, 2012, 38(1): 68-75(韩敏, 郑丹晨. 基于模糊形状上下文特征的形状识别算法. 自动化学报, 2012, 38(1): 68-75)
    [5] Hu R X, Jia W, Ling H B, Zhao Y, Gui J. Angular pattern and binary angular pattern for shape retrieval. IEEE Transactions on Image Processing, 2014, 23(3): 1118-1127
    [6] Zhou Yu, Liu Jun-Tao, Bai Xiang. Research and perspective on shape matching. Acta Automatica Sinica, 2012, 38(6): 889-910(周瑜, 刘俊涛, 白翔. 形状匹配方法研究与展望. 自动化学报, 2012, 38(6): 889-910)
    [7] Mokhtarian F, Abbasi S, Kittler J. Efficient and robust retrieval by shape content through curvature scale space. In: Proceedings of the 1996 International Workshop on Image Databases and Multi-Media Search. Amsterdam, the Netherlands: IAPR, 1996. 35-42
    [8] Adamek T, O'Connor N E. A multiscale representation method for nonrigid shapes with a single closed contour. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14(5): 742-753
    [9] Latecki L J, Lakamper R. Shape similarity measure based on correspondence of visual parts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10): 1185-1190
    [10] Donoser M, Riemenschneider H, Bischof H. Efficient partial shape matching of outer contours. In: Proceedings of the 9th Asian Conference on Computer Vision. Berlin, Heidelberg: Springer-Verlag, 2009. 281-292
    [11] Alajlan N, Kamel M S, Freeman G. Multi-object image retrieval based on shape and topology. Image Communication, 2006, 21(10): 904-918
    [12] Alajlan N, El Rubeb I, Kamelb M S, Freeman G H. Shape retrieval using triangle-area representation and dynamic space warping. Pattern recognition, 2007, 40(7): 1911-1920
    [13] Alajlan N, Kamel M S, Freeman G H. Geometry-based image retrieval in binary image databases. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(6): 1003-1013
    [14] Ling H B, Jacobs D W. Shape classification using the inner-distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2): 286-299
    [15] Sharvit D, Chan J, Tek H, Kimia B B. Symmetry-based indexing of image databases. Journal of Visual Communication and Image Representation, 1998, 9(4): 366-380
    [16] Sebastian T B, Klein P N, Kimia B B. Recognition of shapes by editing their shock graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5): 550-571
    [17] Gdalyahu Y, Weinshall D. Flexible syntactic matching of curves and its application to automatic hierarchical classification of silhouettes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(12): 1312-1328
    [18] Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(4): 509-522
    [19] Felzenszwalb P F, Schwartz J D. Hierarchical matching of deformable shapes. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007. 1-8
    [20] Temlyakov A, Munsell B C, Waggoner J W, Wang S. Two perceptually motivated strategies for shape classification. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010. 2289-2296
    [21] Egozi A, Keller Y, Guterman H. Improving shape retrieval by spectral matching and meta similarity. IEEE Transactions on Image Processing, 2010, 19(5): 1319-1327
    [22] Daliri M R, Torre V. Robust symbolic representation for shape recognition and retrieval. Pattern Recognition, 2008, 41(5): 1782-1798
    [23] Latecki L J, Lakamper R, Eckhardt T. Shape descriptors for non-rigid shapes with a single closed contour. In: Proceedings of the 2000 IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head, USA: IEEE, 2000. 424-429
    [24] Yang X W, Prasad L, Latecki L J. Affinity learning with diffusion on tensor product graph. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 28-38
    [25] Hu R X, Jia W, Zhao Y, Gui J. Perceptually motivated morphological strategies for shape retrieval. Pattern Recognition, 45(9): 3222-3230
    [26] Donoser M, Bischof H. Diffusion processes for retrieval revisited. In: Proceedings of the 2013 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Portland, USA: IEEE, 2013. 1320-1327
    [27] Ling H B, Yang X W, Latecki L J. Balancing deformability and discriminability for shape matching. In: Proceedings of the 11th European Conference on Computer Vision. Crete, Greece: Springer, 2010. 411-424
    [28] Nasreddine K, Benzinou A, Fablet R. Variational shape matching for shape classification and retrieval. Pattern Recognition Letters, 2010, 31(12): 1650-1657
    [29] Xu C J, Liu J Z, Tang X O. 2D shape matching by contour flexibility. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(1): 180-186
    [30] Wang Z Z, Liang M. Locally affine invariant descriptors for shape matching and retrieval. Signal Processing Letters, 2010, 17(9): 803-806
  • 加载中
计量
  • 文章访问数:  1717
  • HTML全文浏览量:  140
  • PDF下载量:  1966
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-29
  • 修回日期:  2015-04-08
  • 刊出日期:  2015-08-20

目录

    /

    返回文章
    返回