2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于感兴趣窄带区域的同步分割与配准方法及在IGRT中的应用

石雪 陈进琥 李洪升 尹勇 李登旺

石雪, 陈进琥, 李洪升, 尹勇, 李登旺. 基于感兴趣窄带区域的同步分割与配准方法及在IGRT中的应用. 自动化学报, 2015, 41(9): 1589-1600. doi: 10.16383/j.aas.2015.c140871
引用本文: 石雪, 陈进琥, 李洪升, 尹勇, 李登旺. 基于感兴趣窄带区域的同步分割与配准方法及在IGRT中的应用. 自动化学报, 2015, 41(9): 1589-1600. doi: 10.16383/j.aas.2015.c140871
SHI Xue, CHEN Jin-Hu, LI Hong-Sheng, YIN Yong, LI Deng-Wang. Synchronous Segmentation and Registration Method Based on Narrow Band of Interest and Its Application to IGRT System. ACTA AUTOMATICA SINICA, 2015, 41(9): 1589-1600. doi: 10.16383/j.aas.2015.c140871
Citation: SHI Xue, CHEN Jin-Hu, LI Hong-Sheng, YIN Yong, LI Deng-Wang. Synchronous Segmentation and Registration Method Based on Narrow Band of Interest and Its Application to IGRT System. ACTA AUTOMATICA SINICA, 2015, 41(9): 1589-1600. doi: 10.16383/j.aas.2015.c140871

基于感兴趣窄带区域的同步分割与配准方法及在IGRT中的应用

doi: 10.16383/j.aas.2015.c140871
基金项目: 

国家自然科学基金(61201441,61471226),山东省自然科学杰出青年基金(JQ201516)资助

详细信息
    作者简介:

    石雪 山东师范大学物理与电子科学学院硕士研究生.主要研究方向为医学图像处理肝脏分割,图像引导放射治疗.E-mail:xue.shi@139.com

    陈进琥 博士,山东省肿瘤医院医学物理师.主要研究方向为肿瘤精确放疗,图像引导放射治疗.E-mail:felixchen@163.com

    李洪升 博士,山东省肿瘤医院主治医生.主要研究方向为肿瘤精确放疗,图像引导放射治疗.E-mail:meddi@sohu.com

    尹勇 博士,山东省肿瘤医院研究员.主要研究方向为肿瘤精确放疗,图像引导放射治疗.E-mail:yinyongsd@126.com

    通讯作者:

    李登旺 博士,山东师范大学医学物理工程技术研究中心副教授.主要研究方向为医学图像处理,图像引导放疗,图像处理技术在癌症精确治疗中的临床应用.本文通信作者.E-mail:lidengwang@sdnu.edu.cn

Synchronous Segmentation and Registration Method Based on Narrow Band of Interest and Its Application to IGRT System

Funds: 

Supported by National Natural Science Foundation of China (61201441, 61471226), and The Shandong Natural Science Outstanding Youth Foundation (JQ201516)

  • 摘要: 医学图像分割与配准是图像引导放疗(Image guided radiation therapy, IGRT)系统中的关键技术. 为提高基于CBCT (Cone beam CT)的IGRT系统实施胸腹部肿瘤放疗的实时性与自适应性, 特别是实现重要危及器官肝脏区域照射剂量的合理控制, 本文提出一种基于感兴趣窄带区域的同步分割与配准方法, 目标是实现放疗计划系统中计划CT和CBCT图像目标区域的分割与配准. 通过构建感兴趣窄带模型, 并且与活动轮廓模型相结合实现初始分割, 然后与基于光流场(Optical flow field, OFF)的形变配准方法进行循环迭代, 从而构造ASOR分割与配准同步模型(Active contour segmentation and optical flow registration synchronously, ASOR). 在方法实施时, 首先利用非线性扩散模型和窄带活动轮廓模型在CT图像中提取肝脏空间初始位置信息, 为同步模型提供合理的肝脏初始轮廓. 然后将该轮廓及相应窄带区域经仿射变换映射到CBCT图像, 进而结合构造的ASOR同步模型, 用光流场确定活动轮廓水平集的运动情况, 使分割与配准在同一个演化过程中完成迭代. 实验结果和临床应用表明, 本文提出的方法应用于基于CBCT的IGRT系统时, 可实现肝脏组织的自动分割与放疗剂量分布的快速计算. 同时, 我们将同步过程中获得的形变域用于实现肝脏与肿瘤靶区等剂量线从计划CT到CBCT的自适应转移, 进行自适应放疗效果的临床测评.
  • [1] Gottlieb K L, Hansen C R, Hansen O, Westberg J, Brink C. Investigation of respiration induced intra-and inter-fractional tumour motion using a standard cone beam CT. Acta Oncologica, 2010, 49(7): 1192-1198
    [2] Saw C B, Yang Y, Li F, Yue N J, Ding C X, Komanduri K, Hug S, Heron D E. Performance characteristics and quality assurance aspects of kilovoltage cone-beam CT on medical linear accelerator. Medical Dosimetry, 2007, 32(2): 80-85
    [3] Long Jian-Wu, Shen Xuan-Jing, Zang Hui, Chen Hai-Peng. An adaptive thresholding algorithm by background estimation in Gaussian scale space. Acta Automatica Sinica, 2014, 40(8): 1773-1782 (龙建武, 申铉京, 臧慧, 陈海鹏. 高斯尺度空间下估计背景的自适应阈值分割算法. 自动化学报, 2014, bf 40(8): 1773-1782)
    [4] Lu Jian-Feng, Lin Hai, Pan Zhi-Geng. Adaptive region growing algorithm in medical images segmentation. Journal of Computer-Aided Design & Computer Graphics, 2005, 17(10): 2168-2173 (陆剑锋, 林海, 潘志庚. 自适应区域生长算法在医学图像分割中的应用. 计算机辅助设计与图形学学报, 2005, 17(10): 2168-2173)
    [5] Liu Y C, Xiao K, Liang A L, Guan H B. Fuzzy C-means clustering with bilateral filtering for medical image segmentation. In: Proceedings of the 7th International Conference. Hybrid Artificial Intelligent Systems. Salamanca, Spain: Springer, 2012. 221-230
    [6] Sun W, Niessen W J, Klein S. Free-form deformation using lower-order B-spline for nonrigid image registration. In: Proceedings of the 17th International Conference Medical Image Computing and Computer Assisted Intervention. Boston, MA: Springer, 2014. 194-201
    [7] Nithiananthan S, Schafer S, Uneri A, Mirota D J, Stayman J W, Zbijewski W, Brock K K, Daly M J, Chan H, Irish J C, Siewerdsen J H. Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach. Medical Physics, 2011, 38(4): 1785-1798
    [8] Paquin D, Levy D, Xing L. Multiscale registration of planning CT and daily cone beam CT images for adaptive radiation therapy. Medical Physics, 2009, 36(1): 4-11
    [9] Wyatt P P, Noble J A. MAP MRF joint segmentation and registration of medical images. Medical Image Analysis, 2003, 7(4): 539-552
    [10] Ashburner J, Friston K J. Unified segmentation. NeuroImage, 2005, 26(3): 839-851
    [11] Chen Yun-Jie, Zhang Jian-Wei, Wei Zhi-Hui, Xia De-Shen, Wang Ping-An. A variational model for simultaneous registration-segmentation to brain MR images. Journal of Computer-Aided Design & Computer Graphics, 2007, 19(2): 215-220(陈允杰,张建伟,韦志辉,夏德深,王平安.同时配准-分割脑 MR 图像的耦合变分模型.计算机辅助设计与图形学学报, 2007, 19(2): 215-220)
    [12] Wang Bin, Li Jie, Gao Xin-Bo. An edge-and region-based level set method with shape priors for image segmentation. Chinese Journal of Computers, 2012, 35(5): 1067-1072(王斌, 李洁, 高新波. 一种基于边缘与区域信息的先验水平集图像分割方法. 计算机学报, 2012, 35(5): 1067-1072)
    [13] Bao L C, Yang Q X, Jin H L. Fast edge-preserving patchmatch for large displacement optical flow. IEEE Transactions on Image Processing, 2014, 23(12): 4996-5006
    [14] Chan T F, Esedoglu S. Aspects of total variation regularized L1 function approximation. SIAM Journal on Applied Mathematics, 2005, 65(5): 1817-1837
    [15] Lin Yao, Tian Jie. A survey on medical image segmentation methods. Pattern Recognition and Artificial Intelligence, 2002, 15(2): 192-204 (林瑶, 田捷. 医学图像分割方法综述. 模式识别与人工智能, 2002, bf 15(2): 192-204)
    [16] Li Deng-Wang, Li Hong-Sheng, Wang Hui, Wang Hong-Jun, Yin Yong, Peng Yu-Hua. Deformable registration method using edge preserving scale space with application in adaptive radiation therapy. Acta Automatica Sinica, 2012, 38(5): 751-758 (李登旺, 李洪升, 王惠, 王洪君, 尹勇, 彭玉华. 基于边缘保护尺度空间的形变配准方法及在自适应放疗中的应用. 自动化学报, 2012, 38(5): 751-758)
    [17] Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 2002, 17(2): 825-841
    [18] Zheng Qiang, Dong En-Qing. Narrow band active contour model for local segmentation of medical and texture images. Acta Automatica Sinica, 2013, 39(1): 21-30 (郑强, 董恩清. 窄带主动轮廓模型及在医学和纹理图像局部分割中的应用. 自动化学报, 2013, 39(1): 21-30)
    [19] Adalsteinsson D, Sethian J A. The fast construction of extension velocities in level set methods. Journal of Computational Physics, 1999, 148(1): 2-22
    [20] Li C Y, Wang X Y, Eberl S, Fulham M, Yin Y, Chen J H, Feng D D. A likelihood and local constraint level set model for liver tumor segmentation from CT volumes. IEEE Transactions on Biomedical Engineering, 2013, 60(10): 2967-2977
    [21] Li C M, Xu C Y, Gui C F, Fox M D. Distance regularized level set evolution and its application to image segmentation. IEEE Transactions on Image Processing, 2010, 19(12): 3243-3254
    [22] Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 1988, 79(1): 12-49
    [23] Heimann T, Van Ginneken B, Styner M A, Arzhaeva Y, Auich V, Bauer C, Beck A, Becker C, Beichel R, Bekes G, Bello F, Binnig G, Bischof H, Bornik A, Cashman P, Chi Y, Cordova A, Dawant B M, Fidrich M, Furst J D, Furukawa D, Grenacher L, Hornegger J, Kainmuller D, Kitney R I, Kobatake H, Lamecker H, Lange T, Lee J, Lennon B, Li R, Li S H, Meinzer H-P, Nemeth G, Raicu D S, Rau A-M, van Rikxoort E M, Rousson M, Rusko L, Saddi K A, Schmidt G, Seghers D, Shimizu A, Slagmolen P, Sorantin E, Soza G, Susomboon R, Waite J M, Wimmer A, Wolf I. Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Transactions on Medical Imaging, 2009, 28(8): 1251-1265
    [24] Liu F, Zhang B S, Kijewski P K, Wang L, Schwartz L H. Liver segmentation for CT images using GVF snake. Medical Physics, 2005, 32(12): 3699-3706
    [25] Lee J J, Kim N, Lee H, Seo J B, Won H J, Shin Y M, Kim S H. Efficient liver segmentation using a level-set method with optimal detection of the initial liver boundary from level-set speed images. Computer Methods and Programs in Biomedicine, 2007, 88(1): 26-38
    [26] Slagmolen P, Elen A, Seghers D, Loeckx D, Maes F, Haustermans K. Atlas based liver segmentation using nonrigid registration with a B-spline transformation model. In: Proceedings of the 2007 MICCAI Workshop on 3D Segmentation in the Clinic: a Grand Challenge. Brisbane, Australia: MICCAI, 2007.197-206
    [27] Sun W, Niessen W J, Klein S. Wavelet based free-form deformations for nonrigid registration. In: Proceedings of Medical Imaging 2014: Image Processing. San Diego, California, USA: SPIE, 2014.
    [28] Deng W H, Hu J N, Guo J. Extended SRC: Undersampled face recognition via intraclass variant dictionary. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(9): 1864-1870
    [29] Lin Hai-Feng, Ma Yu-Feng, Song Tao. Research on object tracking algorithm based on SIFT. Acta Automatica Sinica, 2010, 36(8): 1204-1208 (蔺海峰, 马宇峰, 宋涛. 基于SIFT特征目标跟踪算法研究. 自动化学报, 2010, 36(8): 1204-1208)
    [30] Deng W H, Hu J N, Lu J W, Guo J. Transform-invariant PCA: a unified approach to fully automatic face alignment, representation, and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(6): 1275-1284
  • 加载中
计量
  • 文章访问数:  1244
  • HTML全文浏览量:  79
  • PDF下载量:  1242
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-16
  • 修回日期:  2015-02-09
  • 刊出日期:  2015-09-20

目录

    /

    返回文章
    返回