[1]
|
Magnuson J J. Locomotion by scombroid fishes: hydromechanics, morphology and behavior. Fish Physiology. New York: Academic Press, 1978, 7: 239-313
|
[2]
|
Lighthill M J. Aquatic animal propulsion of high hydromechanical efficiency. Journal of Fluid Mechanics, 1970, 44(2): 265-301
|
[3]
|
Fish F E. Influence of hydrodynamic - design and propulsive mode on mammalian swimming energetics. Australian Journal of Zoology, 1993, 42(1): 79-101
|
[4]
|
Fish F E. Comparative kinematics and hydrodynamics of odontocete cetaceans: morphological and ecological correlates with swimming performance. Journal of Experimental Biology, 1998, 201: 2867-2877
|
[5]
|
Semyonov B N, Babenko V V, Kayan V P. Experimental study of some peculiaritites of dolphins' swimming hydrodynamic. Bionika, 1974, 8: 23-31
|
[6]
|
Romanenko E V. Fish and Dolphin Swimming. Moscow: Pensoft, 2002.
|
[7]
|
Shen Fei, Cao Zhi-Qiang, Xu De, Zhou Chao. A dynamic model of robotic dolphin based on Kane method and its speed optimization method. Acta Automatica Sinica, 2012, 38(8): 1247-1256(沈飞, 曹志强, 徐德, 周超. 基于Kane方法的机器海豚动力学建模及速度优化方法. 自动化学报, 2012, 38(8): 1247-1256)
|
[8]
|
Nakashima M, Ono K. A simple calculation method to analyze the dynamics of carangiform propulsion. In: Proceedings of the 11th International Symposium on UUS Technology. AUSI, 1999. 320-329
|
[9]
|
Weihs D. The hydrodynamics of dolphin drafting. Journal of Biology, 2004, 3(2): 8-8
|
[10]
|
Niiler P P, White H J. Note on the swimming deceleration of a dolphin. Journal of Fluid Mechanics, 1969, 38(3): 613- 617
|
[11]
|
Zhou C, Cao Z Q, Wang S, Tan M. The design, modelling and implementation of a miniature biomimetic robotic fish. International Journal of Robotics and Automation, 2010, 25(3): 210-216
|
[12]
|
Yu J Z, Liu L Z, Tan M. Three-dimensional dynamic modelling of robotic fish: simulations and experiments. Transactions of the Institute of Measurement and Control, 2008, 30(3-4): 239-258
|
[13]
|
Wang Ming, Yu Jun-Zhi, Tan Min, Wang Hui-Dong, Li Cheng-Dong. CPG-based multi-modal swimming control for robotic dolphin. Acta Automatica Sinica, 2014, 40(9): 1933 -1941(汪明, 喻俊志, 谭民, 王会东, 李成栋. 机器海豚多模态游动CPG 控制. 自动化学报, 2014, 40(9): 1933-1941)
|
[14]
|
Nakashima M, Tsubaki T, Ono K. Three-dimensional movement in water of the dolphin robot-control between two positions by roll and pitch combination. Journal of Robotics and Mechatronics, 2006, 18(3): 347-355
|
[15]
|
Yu J Z, Hu Y H, Fan R F, Wang L, Huo J Y. Construction and control of biomimetic robotic dolphin. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation. Orlando, Florida: IEEE, 2006. 2311-2316
|
[16]
|
Yu J Z, Su Z S, Wang M, Tan M, Zhang J W. Control of yaw and pitch maneuvers of a multilink dolphin robot. IEEE Transactions on Robotics, 2012, 28(2): 318-329
|
[17]
|
Wang M, Yu J Z, Tan M, Zhang J W. Design and implementation of a novel CPG-based locomotion controller for robotic dolphin. In: Proceedings of the 8th World Congress on Intelligent Control and Automation. Jinan, China: IEEE, 2010. 1611-1616
|
[18]
|
Shen F, Cao Z Q, Zhou C, Xu D, Gu N. Depth control for robotic dolphin based on fuzzy PID control. International Journal of Offshore and Polar Engineering, 2013, 23(3): 166 -171
|
[19]
|
Yu J Z, Hu Y H, Fan R F, Wang L, Huo J Y. Mechanical design and motion control of a biomimetic robotic dolphin. Advanced Robotics, 2007, 21(3-4): 499-513
|
[20]
|
Hou Zhong-Sheng, Xu Jian-Xin. On data-driven control theory: the state of the art and perspective. Acta Automatica Sinica, 2009, 35(6): 650-667(侯忠生, 许建新. 数据驱动控制理论及方法的回顾和展望. 自动化学报, 2009, 35(6): 650-667)
|
[21]
|
Sun Ming-Xuan, Wang Dan-Wei, Chen Peng-Nian. The repetitive learning control of nonlinear system for limited interval. Science in China Series E: Technological Sciences, 2009,38(1): 1-10 (孙明轩, 王郸维, 陈彭年. 有限区间非线性系统的重复学习控制. 中国科学E辑: 信息科学, 2009,38(1): 1-10)
|