2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于波速驱动的机器海豚平均推进速度控制方法

任光 戴亚平 曹志强 沈飞

任光, 戴亚平, 曹志强, 沈飞. 基于波速驱动的机器海豚平均推进速度控制方法. 自动化学报, 2015, 41(10): 1734-1744. doi: 10.16383/j.aas.2015.c140867
引用本文: 任光, 戴亚平, 曹志强, 沈飞. 基于波速驱动的机器海豚平均推进速度控制方法. 自动化学报, 2015, 41(10): 1734-1744. doi: 10.16383/j.aas.2015.c140867
REN Guang, DAI Ya-Ping, CAO Zhi-Qiang, SHEN Fei. An Average Propulsive Speed Control Method for a Robotic Dolphin with Wave Velocity Propulsion. ACTA AUTOMATICA SINICA, 2015, 41(10): 1734-1744. doi: 10.16383/j.aas.2015.c140867
Citation: REN Guang, DAI Ya-Ping, CAO Zhi-Qiang, SHEN Fei. An Average Propulsive Speed Control Method for a Robotic Dolphin with Wave Velocity Propulsion. ACTA AUTOMATICA SINICA, 2015, 41(10): 1734-1744. doi: 10.16383/j.aas.2015.c140867

基于波速驱动的机器海豚平均推进速度控制方法

doi: 10.16383/j.aas.2015.c140867
详细信息
    作者简介:

    戴亚平 北京理工大学自动化学院教授. 主要研究方向为机动目标跟踪, 基于网 络的远程控制, 多传感器数据融合. E-mail: daiyaping@bit.edu.cn

    通讯作者:

    任光 北京理工大学自动化学院博士 研究生. 主要研究方向为机器人运动学 建模与运动控制. 本文通信作者. E-mail: renguan1979@sina.com

An Average Propulsive Speed Control Method for a Robotic Dolphin with Wave Velocity Propulsion

  • 摘要: 通过分析海豚豚体波推进特点,提出了波速与平均推进速度的匹配方法和工程化的速度匹配方程(Speed-velocity matching equation, SVME), 并进一步设计了基于速度匹配方程的机器海豚平均速度控制实现方法.首先,分析了海豚尾部摆动时呈现的正弦豚体波特征, 指出某一豚体波波速与相应海豚推进平均速度存在严格对应关系,据此给出了速度匹配系数(Speed-velocity matching coefficient, SVMC)定义及速度匹配方程. 然后,以三关节尾部机器海豚为例,根据速度匹配关系特征,建立了三关节尾部摆动豚体波波速与推进平均速度的数学关系. 最后,基于已知的速度匹配系数分布状况,采用分区线性化处理策略分别设计了开环控制方法和自校正控制实现方法. 通过速度匹配系数的取值对机器海豚进行驱动与控制,机器海豚可到达目标平均速度. 实验结果表明,豚体波波速与海豚平均速度存在严格对应关系, 基于速度匹配系数这一数据驱动的机器海豚速度控制方法是可行的.
  • [1] Magnuson J J. Locomotion by scombroid fishes: hydromechanics, morphology and behavior. Fish Physiology. New York: Academic Press, 1978, 7: 239-313
    [2] Lighthill M J. Aquatic animal propulsion of high hydromechanical efficiency. Journal of Fluid Mechanics, 1970, 44(2): 265-301
    [3] Fish F E. Influence of hydrodynamic - design and propulsive mode on mammalian swimming energetics. Australian Journal of Zoology, 1993, 42(1): 79-101
    [4] Fish F E. Comparative kinematics and hydrodynamics of odontocete cetaceans: morphological and ecological correlates with swimming performance. Journal of Experimental Biology, 1998, 201: 2867-2877
    [5] Semyonov B N, Babenko V V, Kayan V P. Experimental study of some peculiaritites of dolphins' swimming hydrodynamic. Bionika, 1974, 8: 23-31
    [6] Romanenko E V. Fish and Dolphin Swimming. Moscow: Pensoft, 2002.
    [7] Shen Fei, Cao Zhi-Qiang, Xu De, Zhou Chao. A dynamic model of robotic dolphin based on Kane method and its speed optimization method. Acta Automatica Sinica, 2012, 38(8): 1247-1256(沈飞, 曹志强, 徐德, 周超. 基于Kane方法的机器海豚动力学建模及速度优化方法. 自动化学报, 2012, 38(8): 1247-1256)
    [8] Nakashima M, Ono K. A simple calculation method to analyze the dynamics of carangiform propulsion. In: Proceedings of the 11th International Symposium on UUS Technology. AUSI, 1999. 320-329
    [9] Weihs D. The hydrodynamics of dolphin drafting. Journal of Biology, 2004, 3(2): 8-8
    [10] Niiler P P, White H J. Note on the swimming deceleration of a dolphin. Journal of Fluid Mechanics, 1969, 38(3): 613- 617
    [11] Zhou C, Cao Z Q, Wang S, Tan M. The design, modelling and implementation of a miniature biomimetic robotic fish. International Journal of Robotics and Automation, 2010, 25(3): 210-216
    [12] Yu J Z, Liu L Z, Tan M. Three-dimensional dynamic modelling of robotic fish: simulations and experiments. Transactions of the Institute of Measurement and Control, 2008, 30(3-4): 239-258
    [13] Wang Ming, Yu Jun-Zhi, Tan Min, Wang Hui-Dong, Li Cheng-Dong. CPG-based multi-modal swimming control for robotic dolphin. Acta Automatica Sinica, 2014, 40(9): 1933 -1941(汪明, 喻俊志, 谭民, 王会东, 李成栋. 机器海豚多模态游动CPG 控制. 自动化学报, 2014, 40(9): 1933-1941)
    [14] Nakashima M, Tsubaki T, Ono K. Three-dimensional movement in water of the dolphin robot-control between two positions by roll and pitch combination. Journal of Robotics and Mechatronics, 2006, 18(3): 347-355
    [15] Yu J Z, Hu Y H, Fan R F, Wang L, Huo J Y. Construction and control of biomimetic robotic dolphin. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation. Orlando, Florida: IEEE, 2006. 2311-2316
    [16] Yu J Z, Su Z S, Wang M, Tan M, Zhang J W. Control of yaw and pitch maneuvers of a multilink dolphin robot. IEEE Transactions on Robotics, 2012, 28(2): 318-329
    [17] Wang M, Yu J Z, Tan M, Zhang J W. Design and implementation of a novel CPG-based locomotion controller for robotic dolphin. In: Proceedings of the 8th World Congress on Intelligent Control and Automation. Jinan, China: IEEE, 2010. 1611-1616
    [18] Shen F, Cao Z Q, Zhou C, Xu D, Gu N. Depth control for robotic dolphin based on fuzzy PID control. International Journal of Offshore and Polar Engineering, 2013, 23(3): 166 -171
    [19] Yu J Z, Hu Y H, Fan R F, Wang L, Huo J Y. Mechanical design and motion control of a biomimetic robotic dolphin. Advanced Robotics, 2007, 21(3-4): 499-513
    [20] Hou Zhong-Sheng, Xu Jian-Xin. On data-driven control theory: the state of the art and perspective. Acta Automatica Sinica, 2009, 35(6): 650-667(侯忠生, 许建新. 数据驱动控制理论及方法的回顾和展望. 自动化学报, 2009, 35(6): 650-667)
    [21] Sun Ming-Xuan, Wang Dan-Wei, Chen Peng-Nian. The repetitive learning control of nonlinear system for limited interval. Science in China Series E: Technological Sciences, 2009,38(1): 1-10 (孙明轩, 王郸维, 陈彭年. 有限区间非线性系统的重复学习控制. 中国科学E辑: 信息科学, 2009,38(1): 1-10)
  • 加载中
计量
  • 文章访问数:  1207
  • HTML全文浏览量:  54
  • PDF下载量:  1260
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-04
  • 修回日期:  2015-06-12
  • 刊出日期:  2015-10-20

目录

    /

    返回文章
    返回