[1]
|
Chapelle O, Schölkopf B, Zien A. Semi-Supervised Learning. Massachusetts: MIT Press, 2006. 2-5
|
[2]
|
Zhu X J. Semi-supervised learning. In: Proceedings of the 2010 Encyclopedia of Machine Learning. US: Springer, 2010. 892-897
|
[3]
|
Balcan M F, Blum A. A PAC-style model for learning from labeled and unlabeled data. In: Proceedings of the 2005 Learning Theory. Berlin, Heidelberg: Springer, 2005. 111-126
|
[4]
|
Kääriäinen M. Generalization error bounds using unlabeled data. In: Proceedings of the 2005 Learning Theory. Berlin, Heidelberg: Springer, 2005. 127-142
|
[5]
|
Singh A, Nowak R D, Zhu X J. Unlabeled data: now it helps, now it doesn't. In: Proceedings of the 2008 Advances in Neural Information Processing Systems 21 (NIPS). Vancouver, Canada, 2008. 1513-1520
|
[6]
|
Wagstaff K, Cardie C, Rogers S, Schrodl S. Constrained k-means clustering with background knowledge. In: Proceedings of the 18th International Conference on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001. 577-584
|
[7]
|
Ruiz C, Spiliopoulou M, Menasalvas E. C-DBSCAN: density-based clustering with constraints. In: Proceedings of the 11th International Conference. Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. Toronto, Canada: Springer, 2007. 216-223
|
[8]
|
Davidson I, Ravi S S. Agglomerative hierarchical clustering with constraints: theoretical and empirical results. In: Proceedings of the 2005 Knowledge Discovery in Databases: PKDD 2005. Berlin, Heidelberg: Springer, 2005. 59-70
|
[9]
|
Deng Chao, Guo Mao-Zu. Tri-training and data editing based semi-supervised clustering algorithm. Journal of Software, 2008, 19(3): 663-673 (in Chinese)
|
[10]
|
Wang Hong-Jun, Li Zhi-Shu, Qi Jian-Huai, Cheng Yang, Zhou Peng, Zhou Wei. Semi-supervised cluster ensemble model based on Bayesian network. Journal of Software, 2010, 21(11): 2814-2825 (in Chinese)
|
[11]
|
Basu S, Banerjee A, Mooney E R, Banerjee A, Mooney R J. Active semi-supervision for pairwise constrained clustering. In: Proceedings of the 2004 SIAM International Conference on Data Mining. Lake Buena Vista, FL: SIAM, 2004. 333-344
|
[12]
|
de Amorim RC. Constrained clustering with Minkowski weighted k-means. In: Proceedings of the 13th IEEE International Symposium Computational Intelligence & Informatics. Budapest: IEEE, 2012. 13-17
|
[13]
|
Yin Xue-Song, Hu En-Liang, Chen Song-Can. Discriminative semi-supervised clustering analysis with pairwise constraints. Journal of Software, 2008, 19(11): 2791-2802 (in Chinese)
|
[14]
|
Wang Y Y, Chen S C, Zhou Z-H. New semi-supervised classification method based on modified cluster assumption. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(5): 689-702
|
[15]
|
Lin B B, Zhang C Y, He X F. Semi-supervised regression via parallel field regularization. In: Proceedings of the 2011 Advances in Neural Information Processing Systems 24 (NIPS). Granada, Spain, 2011. 433-441
|
[16]
|
Xiang S M, Nie F P, Zhang C S. Semi-supervised classification via local spline regression. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(11): 2039-2053
|
[17]
|
Nigam K, McCallum A K, Thrun S, Mitchell T. Text classification from labeled and unlabeled documents using EM. Machine Learning, 2000, 39(2-3): 103-134
|
[18]
|
Nigam K P. Using Unlabeled Data to Improve Text Classification, Technical Report, CMU-CS-01-126, Carnegie Mellon University, Pittsburgh, 2001.
|
[19]
|
Cozman F G, Cohen I, Cirelo M C. Semi-supervised learning of mixture models. In: Proceedings of the 20th International Conference on Machine Learning. Washington D.C., 2003.
|
[20]
|
Bennett K P, Demiriz A. Semi-supervised support vector machines. In: Proceedings of the 1998 Advances in Neural Information Processing Systems. Cambridge: MIT Press, 1998. 368-374
|
[21]
|
Fung G, Mangasarian O. Semi-supervised Support Vector Machines for Unlabeled Data Classification, Technical Report, 99-05, Data Mining Institute, University of Wisconsin Madison, 1999
|
[22]
|
Chapelle O, Zien A. Semi-supervised learning by low density separation. In: Proceedings of the 10th Int Workshop Artificial Intelligence & Statistics, 2005. 57-64
|
[23]
|
Chapelle O, Sindhwani V, Keerthi S S. Branch and bound for semi-supervised support vector machines. In: Advances Neural Information Processing Systems (NIPS). Vancouver, Canada, 2006. 217-224
|
[24]
|
De Bie T, Cristianini N. Convex methods for transduction. In: Proceedings of the 2003 Advances Neural Information Processing Systems 16. Vancouver, Canada, 2003. 73-80
|
[25]
|
Blum A, Chawla S. Learning from labeled and unlabeled data using graph mincuts. In: Proceedings of the 18th International Conference on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001. 19-26
|
[26]
|
Joachims T. Transductive learning via spectral graph partitioning. In: Proceedings of the 20th International Conference on Machine Learning. Washington D.C., 2003. 290-297
|
[27]
|
Zhu X J, Ghahramani Z. Towards Semi-supervised Classification with Markov Random Fields, Technical Report, CMU-CALD-02-106, Carnegie Mellon University, 2002.
|
[28]
|
Xiao Yu, Yu Jian. Semi-Supervised clustering based on affinity propagation algorithm. Journal of Software, 2008, 19(11): 2803-2813 (in Chinese)
|
[29]
|
Culp M, Michailidis G. An iterative algorithm for extending learners to a semi-supervised setting. In: Proceedings of the 2007 Joint Statistical Meetings. Salt Lake, Utah, 2007.
|
[30]
|
Blum A, Mitchell T. Combining labeled and unlabeled data with co-training. In: Proceedings of the 11th Annual Conference on Computational Learning Theory. Madison: ACM, 1998. 92-100
|
[31]
|
Zhou Y, Goldman S. Democratic co-learning. In: Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence. Boca Raton, FL: IEEE, 2004. 594-602
|
[32]
|
Zhou Z H, Li M. Tri-training: exploiting unlabeled data using three classifiers. IEEE Transactions on Knowledge & Data Engineering, 2005, 17(11): 1529-1541
|
[33]
|
Li M, Zhou Z H. Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 2007, 37(6): 1088-1098
|
[34]
|
Murtagh F, Legendre P. Ward's hierarchical clustering method: clustering criterion and agglomerative algorithm. arXiv preprint arXiv, 2011: 1111.6285
|
[35]
|
Zhang T, Ramakrishnan R, Livny M. BIRCH: an efficient data clustering method for very large databases. In: Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data. New York: ACM, 1996. 103-114
|
[36]
|
Guha S, Rastogi R, Shim K. CURE: an efficient clustering algorithm for large databases. In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. New York: ACM, 1998. 73-84
|
[37]
|
Karypis G, Han E H, Kumar V. Chameleon: hierarchical clustering using dynamic modeling. Computer, 1999, 32(8): 68-75
|
[38]
|
Davidson I, Ravi S S. Clustering with constraints: feasibility issues and the k-means algorithm. In: Proceedings of the 2005 SIAM International Conference on Data Mining. Lake Buena Vista, FL: SIAM, 2005. 138-149
|
[39]
|
Cormack R M. A review of classification. J Royal Statistical Society. Series A (General), 1971, 134(3): 321-367
|
[40]
|
Gionis A, Mannila H, Tsaparas P. Clustering aggregation. ACM Transactions on Knowledge Discovery from Data, 2007, 1(1): Article No.4
|
[41]
|
Zahn C T. Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transactions on Computers, 1971, C-20(1): 68-86
|
[42]
|
Chang H, Yeung D Y. Robust path-based spectral clustering. Pattern Recognition, 2008, 41(1): 191-203
|
[43]
|
Dias D B, Madeo R C B, Rocha T, Biscaro H H, Peres S M. Hand movement recognition for Brazilian Sign Language: a study using distance-based neural networks. In: Proceedings of the 2009 International Joint Conference on Neural Networks. Atlanta, GA: IEEE, 2009. 697-704
|
[44]
|
Johnson B, Xie Z X. Classifying a high resolution image of an urban area using super-object information. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 83: 40-49
|
[45]
|
Hripcsak G, Rothschild A S. Agreement, the f-measure, and reliability in information retrieval. Journal of the American Medical Informatics Association, 2005, 12(3): 296-298
|