2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小数据集条件下基于数据再利用的BN参数学习

杨宇 高晓光 郭志高

杨宇, 高晓光, 郭志高. 小数据集条件下基于数据再利用的BN参数学习. 自动化学报, 2015, 41(12): 2058-2071. doi: 10.16383/j.aas.2015.c140838
引用本文: 杨宇, 高晓光, 郭志高. 小数据集条件下基于数据再利用的BN参数学习. 自动化学报, 2015, 41(12): 2058-2071. doi: 10.16383/j.aas.2015.c140838
YANG Yu, GAO Xiao-Guang, GUO Zhi-Gao. Learning BN Parameters with Small Data Sets Based by Data Reutilization. ACTA AUTOMATICA SINICA, 2015, 41(12): 2058-2071. doi: 10.16383/j.aas.2015.c140838
Citation: YANG Yu, GAO Xiao-Guang, GUO Zhi-Gao. Learning BN Parameters with Small Data Sets Based by Data Reutilization. ACTA AUTOMATICA SINICA, 2015, 41(12): 2058-2071. doi: 10.16383/j.aas.2015.c140838

小数据集条件下基于数据再利用的BN参数学习

doi: 10.16383/j.aas.2015.c140838
基金项目: 

国家自然科学基金(60774064,61573285),教育部博士点基金(20116102110026)资助

详细信息
    作者简介:

    杨宇西北工业大学电子信息学院博士研究生. 主要研究方向为小数据集条件下贝叶斯网络结构和参数学习.E-mail: youngiv@126.com

    通讯作者:

    高晓光西北工业大学电子信息学院教授.主要研究方向为智能决策, 复杂系统建模与效能分析.本文通信作者.

Learning BN Parameters with Small Data Sets Based by Data Reutilization

Funds: 

Supported by National Natural Science Foundation of China (60774064, 61573285) and Research Fund for the Doctoral Program Higher Education of China (20116102110026)

  • 摘要: 着重研究了小数据集条件下结合凸约束的离散贝叶斯网络(Bayesian network, BN)参数学习问题, 主要任务是用先验知识弥补数据的不足以提高参数学习精度. 已有成果认为数据和先验知识是独立的, 在参数学习算法中仅将二者机械结合. 经过理论研究后, 本文认为数据和先验知识并不独立, 原有算法浪费了这部分有用信息. 本文立足于数据信息分类, 深入挖掘数据和先验知识之间的约束信息来提高参数学习精度, 提出了新的BN 参数学习算法 --凸约束条件下基于数据再利用的贝叶斯估计. 通过仿真实验展示了所提算法在精度和其他性能上的优势, 进一步证明数据和先验知识不独立思想的合理性.
  • [1] Pearl J. Probabilistic Reasoning in Intelligent Systems. Massachusetts: Morgan Kaufmann, 1988.
    [2] Jin Nai-Gao, Yin Fu-Liang, Chen Zhe. Audio-visual speaker tracking based on dynamic Bayesian network. Acta Automatica Sinica, 2008, 34(9): 1083-1089(金乃高, 殷福亮, 陈喆. 基于动态贝叶斯网络的音视频联合说话人跟踪. 自动化学报, 2008, 34(9): 1083-1089)
    [3] Chen Hai-Yang, Gao Xiao-Guang, Fan Hao. Inference algorithm of variable structure DDBNs and multi-target recognition. Acta Aeronautica Et Astronautica Sinica, 2010, 31(11): 2222-2227(陈海洋, 高晓光, 樊昊. 变结构DDBNS的推理算法与多目标识别. 航空学报, 2010, 31(11): 2222-2227)
    [4] Du You-Tian, Chen Feng, Xu Wen-Li. Approach to human activity multi-scale analysis and recognition based on multi-layer dynamic Bayesian network. Acta Automatica Sinica, 2009, 35(3): 225-232(杜友田, 陈峰, 徐文立. 基于多层动态贝叶斯网络的人的行为多尺度分析及识别方法. 自动化学报, 2009, 35(3): 225-232)
    [5] Wan Jiu-Qing, Liu Qing-Yun. Data association in visual sensor networks based on high-order spatio-temporal model. Acta Automatica Sinica, 2012, 38(2): 236-247(万九卿, 刘青云. 基于高阶时空模型的视觉传感网络数据关联方法. 自动化学报, 2012, 38(2): 236-247)
    [6] Tamda Y, Imoto S, Araki H, Nagasaki M, Printe C, Charnock-Jones D S, Miyano S. Estimating genome-wide gene networks using nonparametric Bayesian network models on massively parallel computers. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8(3): 683-697
    [7] Chang R, Shoemaker R, Wang W. A novel knowledge-driven systems biology approach for phenotype prediction upon genetic intervention. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8(5): 1170-1182
    [8] Ibrahim W, Beiu V. Using Bayesian networks to accurately calculate the reliability of complementary metal oxide semiconductor gates. IEEE Transactions on Reliability, 2011, 60(3): 538-549
    [9] Jin Can-Can, Zuo Hong-Fu, Zhang Ying, Bai Fang. Research on risk evaluation for airlines based on BBN. Acta Aeronautica ET Astronautica Sinica, 2013, 34(3): 588-596(金灿灿, 左洪福, 张营, 白芳. 基于BBN的航空公司风险评估技术研究. 航空学报, 2013, 34(3): 588-596)
    [10] Yin Xiao-Wei, Qian Wen-Xue, Xie Li-Yang. A method for system reliabiltiy assessment based on Bayesian networks. Acta Aeronautica ET Astronautica Sinica, 2008, 29(6): 1482-1489(尹晓伟, 钱文学, 谢里阳. 系统可靠性的贝叶斯网络评估方法. 航空学报, 2008, 29(6): 1482-1489)
    [11] Druzdzel M J. Probabilistic Reasoning in Decision Support Systems: From Computation to Common Sense [Ph.D. dissertation], Carnegie Mellon University, Pennsylvania, 1993.
    [12] Druzdzel M, van der Gaag L C. Building probabilistic networks: "where do the numbers come from?" guest editors' introduction. IEEE Transactions on Knowledge and Data Engineering, 2000, 12(4): 481-486
    [13] Sijbers J, den Dekker A J, Scheunders P, Van Dyck D. Maximum-likelihood estimation of Rician distribution parameters. IEEE Transactions on Medical Imaging, 1998, 17(3): 357-361
    [14] Helsper E M, van der Gaag L C, Groenendaal F. Designing a procedure for the acquisition of probability constraints for Bayesian networks. In: Proceedings of the 14th Conference on Engineering Knowledge in the Age of the Semantic Web. Whittlebury Hall, UK: Springer, 2004. 280-292
    [15] Guo Zhi-Gao, Gao Xiao-Guang, Di Ruo-Hai. Learning Bayesian network parameters under dual constraints from small data set. Acta Automatica Sinica, 2014, 40(7): 15091516(郭志高, 高晓光, 邸若海. 小数据集条件下基于双重约束的BN参数学习. 自动化学报, 2014, 40(7): 1509-1516)
    [16] Wittig F, Jameson A. Exploiting qualitative knowledge in the learning of conditional probabilities of Bayesian networks. In: Proceedings of the 16th International Conference on Uncertainty in Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers, 2000. 644-652
    [17] Altendorf E E, Restificar A C, Dietterich T G. Learning from sparse data by exploiting monotonicity constraints. In: Proceedings of the 21st International Conference on Uncertainty in Artificial Intelligence. Arlington, Virginia: AUAI Press, 2005. 18-26
    [18] Liao W H, Ji Q. Learning Bayesian network parameters under incomplete data with domain knowledge. Pattern Recognition, 2009, 42(11): 3046-3056
    [19] de Campos C P, Tong Y, Ji Q. Constrained maximum likelihood learning of Bayesian networks for facial action recognition. In: Proceedings of the 10th European Conference on Computer Vision. Marseille, France: Springer, 2008. 168181
    [20] de Campos C P, Ji Q. Improving Bayesian network parameter learning using constraints. In: Proceedings of the 19th International Conference on Pattern Recognition. Tampa, Florida: IEEE: 2008. 1-4
    [21] Feelders A, van der Gaag L C. Learning Bayesian network parameters under order constraints. International Journal of Approximate Reasoning, 2006, 42(1-2): 37-53
    [22] Chang R, Wang W. Novel algorithm for Bayesian network parameter learning with informative prior constraints. In: Proceedings of the 2010 International Joint Conference on Neural Networks. Barcelona: IEEE, 2010. 1-8
    [23] Zhang Lian-Wen, Guo Hai-Peng. Introduction to Bayesian Networks. Beijing: Science Press, 2006.(张连文, 郭海鹏. 贝叶斯网引论. 北京: 科学出版社, 2006.)
    [24] Zhou Y, Fenton N, Neil M. Bayesian network approach to multinomial parameter learning using data and expert judgments. International Journal of Approximate Reasoning, 2014, 55(5): 1252-1268
  • 加载中
计量
  • 文章访问数:  1479
  • HTML全文浏览量:  94
  • PDF下载量:  1637
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-04
  • 修回日期:  2015-07-21
  • 刊出日期:  2015-12-20

目录

    /

    返回文章
    返回