2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于目标分解的高维多目标并行进化优化方法

巩敦卫 刘益萍 孙晓燕 韩玉艳

巩敦卫, 刘益萍, 孙晓燕, 韩玉艳. 基于目标分解的高维多目标并行进化优化方法. 自动化学报, 2015, 41(8): 1438-1451. doi: 10.16383/j.aas.2015.c140832
引用本文: 巩敦卫, 刘益萍, 孙晓燕, 韩玉艳. 基于目标分解的高维多目标并行进化优化方法. 自动化学报, 2015, 41(8): 1438-1451. doi: 10.16383/j.aas.2015.c140832
GONG Dun-Wei, LIU Yi-Ping, SUN Xiao-Yan, HAN Yu-Yan. Parallel Many-objective Evolutionary Optimization Using Objectives Decomposition. ACTA AUTOMATICA SINICA, 2015, 41(8): 1438-1451. doi: 10.16383/j.aas.2015.c140832
Citation: GONG Dun-Wei, LIU Yi-Ping, SUN Xiao-Yan, HAN Yu-Yan. Parallel Many-objective Evolutionary Optimization Using Objectives Decomposition. ACTA AUTOMATICA SINICA, 2015, 41(8): 1438-1451. doi: 10.16383/j.aas.2015.c140832

基于目标分解的高维多目标并行进化优化方法

doi: 10.16383/j.aas.2015.c140832
基金项目: 

国家重点基础研究发展计划(973计划) (2014CB046306-2), 国家自然科学基金(61375067), 江苏省自然科学基金 (BK2012566)资助

详细信息
    作者简介:

    巩敦卫 中国矿业大学信息与电气工程学院教授.1999年在中国矿业大学获博士学位.主要研究方向为进化计算与应用.E-mail:dwgong@vip.163.com

Parallel Many-objective Evolutionary Optimization Using Objectives Decomposition

Funds: 

Supported by National Basic Research Program of China (973 Program) (2014CB046306-2), National Natural Science Foundation of China (61375067), and Natural Science Foundation of Jiangsu Province (BK2012566)

  • 摘要: 高维多目标优化问题普遍存在且难以解决, 到目前为止, 尚缺乏有效解决该问题的进化优化方法. 本文提出一种基于目标分解的高维多目标并行进化优化方法, 首先, 将高维多目标优化问题分解为若干子优化问题, 每一子优化问题除了包含原优化问题的少数目标函数之外, 还具有由其他目标函数聚合成的一个目标函数, 以降低问题求解的难度; 其次, 采用多种群并行进化算法, 求解分解后的每一子优化问题, 并在求解过程中, 充分利用其他子种群的信息, 以提高Pareto非被占优解的选择压力; 最后, 基于各子种群的非被占优解形成外部保存集, 从而得到高维多目标优化问题的Pareto 最优解集. 性能分析表明, 本文提出的方法具有较小的计算复杂度. 将所提方法应用于多个基准优化问题, 并与NSGA-II、PPD-MOEA、ε-MOEA、HypE和MSOPS等方法比较, 实验结果表明, 所提方法能够产生收敛性、分布性, 以及延展性优越的Pareto最优解集.
  • [1] Zhang Xiao-Dong, Yao Xiao-Lan, Wu Qing-He, Li Dao-Ping. Design and application of a class of multiplexed receding horizon controllers for looper control system. Acta Automatica Sinica, 2011, 37(3): 380-384(张晓东, 姚小兰, 伍清河, 李道平. 一类基于滚动时域优化原理的多路控制器设计及其在活套控制中的应用. 自动化学报, 2011, 37(3): 380-384)
    [2] Kong Wei-Jian, Chai Tian-You, Ding Jin-Liang, Wu Zhi-Wei. A real-time multiobjective electric energy allocation optimization approach for the smelting process of magnesia. Acta Automatica Sinica, 2014, 40(1): 51-61(孔维健, 柴天佑, 丁进良, 吴志伟. 镁砂熔炼过程全厂电能分配实时多目标优化方法研究. 自动化学报, 2014, 40(1): 51-61)
    [3] Zuo Xing-Quan, Wang Chun-Lu, Zhao Xin-Chao. Combining multi-objective immune algorithm and linear programming for double row layout problem. Acta Automatica Sinica, 2015, 41(3): 528-540(左兴权, 王春露, 赵新超. 一种结合多目标免疫算法和线性规划的双行设备布局方法. 自动化学报, 2015, 41(3): 528-540)
    [4] Deb K, Pratap A, Agarwal A, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197
    [5] Zitzler E, Laumanns M, Thiele L. SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Proceedings of the 5th Conference on Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems. Athens, Greece: CIMNE, 2001. 95-100
    [6] Deb K, Saxena D K. Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. In: Proceedings of the 2006 IEEE Congress on Evolutionary Computation. Vancouver, Canada: IEEE, 2006. 3353-3360
    [7] Jaimes A L, Coello C A C, Chakraborty D. Objective reduction using a feature selection technique. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation. New York, USA: ACM, 2008. 673-680
    [8] Adra S F, Fleming P J. Diversity management in evolutionary many-objective optimization. IEEE Transactions on Evolutionary Computation, 2011, 15(2): 183-195
    [9] Li M Q, Yang S X, Liu X H. Shift-based density estimation for Pareto-based algorithms in many-objective optimization. IEEE Transactions on Evolutionary Computation, 2014, 18(3): 348-365
    [10] Sato H, Aguirre H E, Tanaka K. Pareto partial dominance MOEA and hybrid archiving strategy included CDAS in many-objective optimization. In: Proceedings of the 2010 IEEE Congress on Evolutionary Computation. Barcelona, Spain: IEEE, 2010. 1-8
    [11] Jaimes A L, Coello C A C, Aguirre H, Tanaka K. Objective space partitioning using conflict information for solving many-objective problems. Information Sciences, 2014, 268: 305-327
    [12] Deb K, Mohan M, Mishra S. Evaluating the ε-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions. Evolutionary Computation, 2005, 13(4): 501-525
    [13] Kukkonen S, Lampinen J. Ranking-dominance and many-objective optimization. In: Proceedings of the 2007 IEEE Congress on Evolutionary Computation. Singapore: IEEE, 2007. 3983-3990
    [14] Zitzler E, Künzli S. Indicator-based selection in multiobjective search. In: Proceedings of the 8th International Conference on Parallel Problem Solving from Nature. Berlin: Springer-Verlag, 2004. 832-842
    [15] Bader J, Zitzler E. HypE: an algorithm for fast hyper- volume-based many-objective optimization. Evolutionary Computation, 2011, 19(1): 45-76
    [16] Hughes E J. Multiple single objective Pareto sampling. In: Proceedings of the 2003 IEEE Congress on Evolutionary Computation. Canberra, Australia: IEEE, 2003. 2678-2684
    [17] Zhang Q F, Li H. MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-730
    [18] Zitzler E, Thiele L, Bader J. On set-based multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2010, 14(1): 58-79
    [19] Gong Dun-Wei, Ji Xin-Fang, Sun Xiao-Yan. Solving many-objective optimization problems using set-based evolutionary algorithms. Acta Electronica Sinica, 2014, 42(1): 77-83(巩敦卫, 季新芳, 孙晓燕. 基于集合的高维多目标优化问题的进化算法. 电子学报, 2014, 42(1): 77-83)
    [20] Toro F, Ortega J, Fernandez J, Diaz A. PSFGA: a parallel genetic algorithm for multiobjective optimization. In: Proceedings of the 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing. Canary Islands: IEEE Computer Society, 2002. 384-391
    [21] Qi R B, Ma T Y, Sun F, Qian F. Evolutionary algorithm based on the evolution of Pareto archive and individual migration. In: Proceedings of the 2011 International Symposium on Advanced Control of Industrial Processes. Hangzhou, China: IEEE, 2011. 90-95
    [22] Wang Xing. Non-Parametric Statistics. Beijing: Tsinghua University Press, 2009. 180-184(王星. 非参数统计. 北京: 清华大学出版社, 2009. 180-184)
    [23] Murata T, Taki A. Examination of the performance of objective reduction using correlation-based weighted-sum for many objective knapsack problems. In: Proceedings of the 10th International Conference on Hybrid Intelligent Systems. Atlanta, GA: IEEE, 2010. 175-180
    [24] Deb K, Thiele L, Laumanns M, Zitzler E. Scalable test problems for evolutionary multiobjective optimization. In: Proceedings of the 2005 Evolutionary Multiobjective Optimization. London: Springer-Verlag, 2005. 105-145
    [25] Corne D W, Knowles J D. Techniques for highly multiobjective optimisation: some nondominated points are better than others. In: Proceedings of the 9th Annual Conference Genetic Evolutionary Computation. London, England: ACM, 2007. 773-780
    [26] van Veldhuizen D A, Lamont G B. On measuring multiobjective evolutionary algorithm performance. In: Proceedings of the 2000 IEEE Congress on Evolutionary Computation. San Diego, CA, US: IEEE, 2000. 204-211
    [27] Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: empirical results. Evolutionary Computation, 2000, 8(2): 173-195
    [28] Zhang Q F, Zhou A M, Zhao S Z, Suganthan P N, Liu W D, Tiwari S. Multiobjective Optimization Test Instances for the CEC 2009 Special Session and Competition, Technical Report CES-487, University of Essex, Colchester, UK, and Nanyang Technological University, Singapore, 2008.
    [29] Ishibuchi H, Akedo N, Nojima Y. Behavior of multi-objective evolutionary algorithms on many-objective knapsack problems. IEEE Transactions on Evolutionary Computation, 2015, 19(2): 264-283
  • 加载中
计量
  • 文章访问数:  2129
  • HTML全文浏览量:  149
  • PDF下载量:  1746
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-01
  • 修回日期:  2015-04-08
  • 刊出日期:  2015-08-20

目录

    /

    返回文章
    返回