2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于粗糙集和新能量公式的水平集图像分割

张迎春 郭禾

张迎春, 郭禾. 基于粗糙集和新能量公式的水平集图像分割. 自动化学报, 2015, 41(11): 1913-1925. doi: 10.16383/j.aas.2015.c140823
引用本文: 张迎春, 郭禾. 基于粗糙集和新能量公式的水平集图像分割. 自动化学报, 2015, 41(11): 1913-1925. doi: 10.16383/j.aas.2015.c140823
ZHANG Ying-Chun, GUO He. Level Set Image Segmentation Based on Rough Set and New Energy Formula. ACTA AUTOMATICA SINICA, 2015, 41(11): 1913-1925. doi: 10.16383/j.aas.2015.c140823
Citation: ZHANG Ying-Chun, GUO He. Level Set Image Segmentation Based on Rough Set and New Energy Formula. ACTA AUTOMATICA SINICA, 2015, 41(11): 1913-1925. doi: 10.16383/j.aas.2015.c140823

基于粗糙集和新能量公式的水平集图像分割

doi: 10.16383/j.aas.2015.c140823
基金项目: 

国家自然科学基金(61033012)资助

详细信息
    作者简介:

    郭禾 大连理工大学软件学院教授.1982年在吉林大学计算机系获学士学位,1989年在大连理工大学计算机系获硕士学位.主要研究方向为图像处理,系统结构等.E-mail:guohe@dlut.edu.cn

    通讯作者:

    张迎春 大连理工大学软件学院博士研究生.2009年获得辽宁师范大学计算机学院硕士学位.主要研究方向为图像处理和粗糙集理论.本文通信作者.E-mail:zhangyingchun1871@163.com

Level Set Image Segmentation Based on Rough Set and New Energy Formula

Funds: 

Supported by National Natural Science Foundation of China (61033012)

  • 摘要: 为了提高水平集图像分割的质量和减少水平集迭代次数,本文提出了新的能量公式和水平集函数.在粗糙集数据离散化基础上引入了针对图像数据的离散化方法,根据图像离散区域的信息对新能量函数进行直接加权并且对核函数进行间接加权,使用加权的核映射函数将原始离散图像数据映射到高维空间,从而使得该模型可以处理多种类型的图像甚至是一定信噪比的噪声图像.新的能量公式联合由它导出的区域参数能够更好地表达同质区域的灰度信息,从而能够更精确地分割图像.与传统水平集图像分割不同,在迭代过程中新的水平集函数中的水平集元素可以拥有不同的步长,步长越大水平集元素的更新速度越快并且水平集函数能够快速达到收敛状态,实现快速图像分割.人工合成图像和真实图像的分割实验表明本文方法可以获得更好的分割效果.
  • [1] Pham V T, Tran T T, Shyu K K, Lin L Y, Wang Y H, Lo M T. Multiphase B-spline level set and incremental shape priors with applications to segmentation and tracking of left ventricle in cardiac MR images. Machine Vision and Applications, 2014, 25(8):1967-1987
    [2] [2] Wang Y L, Wang H M, Bi S S, Guo B. Automatic morphological characterization of nanobubbles with a novel image segmentation method and its application in the study of nanobubble coalescence. Beilstein Journal of Nanotechnology, 2015, 6:952-963
    [3] Fan Chao-Dong, Zhang Ying-Jie, Ouyang Hong-Lin, Xiao Le-Yi. Improved Otsu method based on histogram oblique segmentation for segmentation of rotary kiln flame image. Acta Automatica Sinica, 2014, 40(11):2480-2489(范朝冬, 张英杰, 欧阳红林, 肖乐意. 基于改进斜分Otsu法的回转窑火焰图像分割. 自动化学报, 2014, 40(11):2480-2489)
    [4] [4] Kass M, Witkin A, Terzopoulos D. Snakes:active contour models. International Journal of Computer Vision, 1988, 1(4):321-331
    [5] [5] Osher S, Sethian JA. Fronts propagating with curvature-dependent speed:algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 1988, 79(1):12-49
    [6] [6] Caselles V, Catt F, Coll T, Dibos F. A geometric model for active contours in image processing. Numerische Mathematik, 1993, 66(1):1-31
    [7] [7] Paragios N, Deriche R. Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(3):266-280
    [8] [8] Wang W M, Zhu L, Qin J, Chui Y P, Li B N, Heng P A. Multiscale geodesic active contours for ultrasound image segmentation using speckle reducing anisotropic diffusion. Optics and Lasers in Engineering, 2014, 54:105-116
    [9] [9] Luo Y G, Ko J K, Shi L, Guan Y, Li L, Qin J, Heng P A, Chu W C, Wang D. Myocardial iron loading assessment by automatic left ventricle segmentation with morphological operations and geodesic active contour on T2*images. Scientific Reports, 2015, 5:12438
    [10] Marquez-Neila P, Baumela L, Alvarez L. A morphological approach to curvature-based evolution of curves and surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(1):2-17
    [11] Roy S, Mukhopadhyay S, Mishra M K. Enhancement of morphological snake based segmentation by imparting image attachment through scale-space continuity. Pattern Recognition, 2015, 48(7):2254-2268
    [12] Chan T F, Vese L A. Active contours without edges. IEEE Transactions on Image Processing, 2001, 10(2):266-277
    [13] Vese L A, Chan T F. A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision, 2002, 50(3):271-293
    [14] Lie J, Lysaker M, Tai X C. A binary level set model and some applications to Mumford-Shah image segmentation. IEEE Transactions on Image Processing, 2006, 15(5):1171-1181
    [15] Li C M, Kao C Y, Gore J C, Ding Z H. Minimization of region-scalable fitting energy for image segmentation. IEEE Transactions on Image Processing, 2008, 17(10):1940-1949
    [16] Zhang K H, Song H H, Zhang L. Active contours driven by local image fitting energy. Pattern Recognition, 2010, 43(4):1199-1206
    [17] Li C M, Huang R, Ding Z H, Gatenby J C, Metaxas D N, Gore J C. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Transactions on Image Processing, 2011, 20(7):2007-2016
    [18] Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 1989, 42(5):577-685
    [19] Zheng Qiang, Dong En-Qing. Narrow band active contour model for local segmentation of medical and texture images. Acta Automatica Sinica, 2013, 39(1):21-30(郑强, 董恩清. 窄带主动轮廓模型及在医学和纹理图像局部分割中的应用. 自动化学报, 2013, 39(1):21-30)
    [20] Ben Salah M, Mitiche A, Ben Ayed I. Effective level set image segmentation with a kernel induced data term. IEEE Transactions on Image Processing, 2010, 19(1):220-232
    [21] Cover T M. Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Transactions on Electronic Computers, 1965, EC-14(3):326-334
    [22] Cleuziou G, Moreno J G. Kernel methods for point symmetry-based clustering. Pattern Recognition, 2015, 48(9):2812-2830
    [23] Kim K, Son Y, Lee J. Voronoi cell-based clustering using a kernel support. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(4):1146-1156
    [24] Liu G Y, Zhang Y, Wang A M. Incorporating adaptive local information into fuzzy clustering for image segmentation. IEEE Transactions on Image Processing, 2015, 24(11):3990-4000
    [25] Tang Li-Ming, Tian Xue-Quan, Huang Da-Rong, Wang Xiao-Feng. Image segmentation model combined with FCMS and Variational level set. Acta Automatica Sinica, 2014, 40(6):1233-1248(唐利明, 田学全, 黄大荣, 王晓峰. 结合FCMS与变分水平集的图像分割模型. 自动化学报, 2014, 40(6):1233-1248)
    [26] Ray K S. Soft Computing and Its Applications, Volume One. New Jersey:Apple Academic Press, 2014. 531-596
    [27] Wang Guo-Yin. The Theory of Rough Set and Knowledge Acquisition. Xi'an:Xi'an Jiaotong University Press, 2001. (王国胤. Rough集理论与知识获取. 西安:西安交通大学出版社, 2001.)
    [28] Xu Yan, Huai Jin-Peng, Wang Zhao-Qi. Reduction algorithm based on discernibility and its applications. Chinese Journal of Computers, 2003, 26(1):97-103(徐燕, 怀进鹏, 王兆其. 基于区分能力大小的启发式约简算法及其应用. 计算机学报, 2003, 26(1):97-103)
    [29] Zhang Ying-Chun, Zhang Dan-Feng, Yan De-Qin. New methods for attribute reduction of information table. Computer Engineering, 2010, 36(1):49-50, 72(张迎春, 张丹枫, 闫德勤. 信息表属性约简新方法. 计算机工程, 2010, 36(1):49-50, 72)
    [30] Zhang Ying-Chun, Guo He, Zhang Dan-Feng. An improved KM model for level set image segmentation. Computer Engineer, 2016, 42(4)(张迎春, 郭禾, 张丹枫. 水平集图像分割KM模型的改进. 计算机工程, 2016, 42(4))
    [31] Muller K R, Mika S, Ratsch G, Tsuda K, Scholkopf B. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 2001, 12(2):181-201
    [32] Sethian J A. Level Set Methods and Fast Marching Methods (Second edition). Cambridge:Cambridge University Press, 1999.
    [33] Aubert-Broche B, Griffin M, Pike G B, Evans A C, Collins D L. Twenty new digital brain phantoms for creation of validation image data bases. IEEE Transactions on Medical Imaging, 2006, 25(11):1410-1416
    [34] Aubert-Broche B, Evans A C, Collins L. A new improved version of the realistic digital brain phantom. NeuroImage, 2006, 32(1):138-145
    [35] Shattuck D W, Sandor-Leahy S R, Schaper K A, Rottenberg D A, Leahy R M. Magnetic resonance image tissue classification using a partial volume model. NeuroImage, 2001, 13(5):856-876
    [36] Martin D, Fowlkes C, Tal D, Malik J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In:Proceedings of the 8th IEEE International Conference on Computer Vision. Vancouver, Canada:IEEE, 2001. 416-423
    [37] Unnikrishnan R, Pantofaru C, Hebert M. A measure for objective evaluation of image segmentation algorithms. In:Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA:IEEE, 2005. 34
    [38] Meilă M. Comparing clusterings:an axiomatic view. In:Proceedings of the 22nd International Conference on Machine Learning. New York, USA:ACM, 2005. 577-584
    [39] Freixenet J, Muoz X, Raba D, Mart J, Cufi X. Yet another survey on image segmentation:region and boundary information integration. In:Proceedings of the 7th European Conference on Computer Vision. Copenhagen, Denmark:Springer, 2002. 408-422
    [40] Yang A Y, Wright J, Ma Y, Sastry S S. Unsupervised segmentation of natural images via lossy data compression. Computer Vision and Image Understanding, 2008, 110(2):212-225
  • 加载中
计量
  • 文章访问数:  1315
  • HTML全文浏览量:  42
  • PDF下载量:  615
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-28
  • 修回日期:  2015-08-31
  • 刊出日期:  2015-11-20

目录

    /

    返回文章
    返回