[1]
|
Pham V T, Tran T T, Shyu K K, Lin L Y, Wang Y H, Lo M T. Multiphase B-spline level set and incremental shape priors with applications to segmentation and tracking of left ventricle in cardiac MR images. Machine Vision and Applications, 2014, 25(8):1967-1987
|
[2]
|
[2] Wang Y L, Wang H M, Bi S S, Guo B. Automatic morphological characterization of nanobubbles with a novel image segmentation method and its application in the study of nanobubble coalescence. Beilstein Journal of Nanotechnology, 2015, 6:952-963
|
[3]
|
Fan Chao-Dong, Zhang Ying-Jie, Ouyang Hong-Lin, Xiao Le-Yi. Improved Otsu method based on histogram oblique segmentation for segmentation of rotary kiln flame image. Acta Automatica Sinica, 2014, 40(11):2480-2489(范朝冬, 张英杰, 欧阳红林, 肖乐意. 基于改进斜分Otsu法的回转窑火焰图像分割. 自动化学报, 2014, 40(11):2480-2489)
|
[4]
|
[4] Kass M, Witkin A, Terzopoulos D. Snakes:active contour models. International Journal of Computer Vision, 1988, 1(4):321-331
|
[5]
|
[5] Osher S, Sethian JA. Fronts propagating with curvature-dependent speed:algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 1988, 79(1):12-49
|
[6]
|
[6] Caselles V, Catt F, Coll T, Dibos F. A geometric model for active contours in image processing. Numerische Mathematik, 1993, 66(1):1-31
|
[7]
|
[7] Paragios N, Deriche R. Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(3):266-280
|
[8]
|
[8] Wang W M, Zhu L, Qin J, Chui Y P, Li B N, Heng P A. Multiscale geodesic active contours for ultrasound image segmentation using speckle reducing anisotropic diffusion. Optics and Lasers in Engineering, 2014, 54:105-116
|
[9]
|
[9] Luo Y G, Ko J K, Shi L, Guan Y, Li L, Qin J, Heng P A, Chu W C, Wang D. Myocardial iron loading assessment by automatic left ventricle segmentation with morphological operations and geodesic active contour on T2*images. Scientific Reports, 2015, 5:12438
|
[10]
|
Marquez-Neila P, Baumela L, Alvarez L. A morphological approach to curvature-based evolution of curves and surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(1):2-17
|
[11]
|
Roy S, Mukhopadhyay S, Mishra M K. Enhancement of morphological snake based segmentation by imparting image attachment through scale-space continuity. Pattern Recognition, 2015, 48(7):2254-2268
|
[12]
|
Chan T F, Vese L A. Active contours without edges. IEEE Transactions on Image Processing, 2001, 10(2):266-277
|
[13]
|
Vese L A, Chan T F. A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision, 2002, 50(3):271-293
|
[14]
|
Lie J, Lysaker M, Tai X C. A binary level set model and some applications to Mumford-Shah image segmentation. IEEE Transactions on Image Processing, 2006, 15(5):1171-1181
|
[15]
|
Li C M, Kao C Y, Gore J C, Ding Z H. Minimization of region-scalable fitting energy for image segmentation. IEEE Transactions on Image Processing, 2008, 17(10):1940-1949
|
[16]
|
Zhang K H, Song H H, Zhang L. Active contours driven by local image fitting energy. Pattern Recognition, 2010, 43(4):1199-1206
|
[17]
|
Li C M, Huang R, Ding Z H, Gatenby J C, Metaxas D N, Gore J C. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Transactions on Image Processing, 2011, 20(7):2007-2016
|
[18]
|
Mumford D, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 1989, 42(5):577-685
|
[19]
|
Zheng Qiang, Dong En-Qing. Narrow band active contour model for local segmentation of medical and texture images. Acta Automatica Sinica, 2013, 39(1):21-30(郑强, 董恩清. 窄带主动轮廓模型及在医学和纹理图像局部分割中的应用. 自动化学报, 2013, 39(1):21-30)
|
[20]
|
Ben Salah M, Mitiche A, Ben Ayed I. Effective level set image segmentation with a kernel induced data term. IEEE Transactions on Image Processing, 2010, 19(1):220-232
|
[21]
|
Cover T M. Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Transactions on Electronic Computers, 1965, EC-14(3):326-334
|
[22]
|
Cleuziou G, Moreno J G. Kernel methods for point symmetry-based clustering. Pattern Recognition, 2015, 48(9):2812-2830
|
[23]
|
Kim K, Son Y, Lee J. Voronoi cell-based clustering using a kernel support. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(4):1146-1156
|
[24]
|
Liu G Y, Zhang Y, Wang A M. Incorporating adaptive local information into fuzzy clustering for image segmentation. IEEE Transactions on Image Processing, 2015, 24(11):3990-4000
|
[25]
|
Tang Li-Ming, Tian Xue-Quan, Huang Da-Rong, Wang Xiao-Feng. Image segmentation model combined with FCMS and Variational level set. Acta Automatica Sinica, 2014, 40(6):1233-1248(唐利明, 田学全, 黄大荣, 王晓峰. 结合FCMS与变分水平集的图像分割模型. 自动化学报, 2014, 40(6):1233-1248)
|
[26]
|
Ray K S. Soft Computing and Its Applications, Volume One. New Jersey:Apple Academic Press, 2014. 531-596
|
[27]
|
Wang Guo-Yin. The Theory of Rough Set and Knowledge Acquisition. Xi'an:Xi'an Jiaotong University Press, 2001. (王国胤. Rough集理论与知识获取. 西安:西安交通大学出版社, 2001.)
|
[28]
|
Xu Yan, Huai Jin-Peng, Wang Zhao-Qi. Reduction algorithm based on discernibility and its applications. Chinese Journal of Computers, 2003, 26(1):97-103(徐燕, 怀进鹏, 王兆其. 基于区分能力大小的启发式约简算法及其应用. 计算机学报, 2003, 26(1):97-103)
|
[29]
|
Zhang Ying-Chun, Zhang Dan-Feng, Yan De-Qin. New methods for attribute reduction of information table. Computer Engineering, 2010, 36(1):49-50, 72(张迎春, 张丹枫, 闫德勤. 信息表属性约简新方法. 计算机工程, 2010, 36(1):49-50, 72)
|
[30]
|
Zhang Ying-Chun, Guo He, Zhang Dan-Feng. An improved KM model for level set image segmentation. Computer Engineer, 2016, 42(4)(张迎春, 郭禾, 张丹枫. 水平集图像分割KM模型的改进. 计算机工程, 2016, 42(4))
|
[31]
|
Muller K R, Mika S, Ratsch G, Tsuda K, Scholkopf B. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 2001, 12(2):181-201
|
[32]
|
Sethian J A. Level Set Methods and Fast Marching Methods (Second edition). Cambridge:Cambridge University Press, 1999.
|
[33]
|
Aubert-Broche B, Griffin M, Pike G B, Evans A C, Collins D L. Twenty new digital brain phantoms for creation of validation image data bases. IEEE Transactions on Medical Imaging, 2006, 25(11):1410-1416
|
[34]
|
Aubert-Broche B, Evans A C, Collins L. A new improved version of the realistic digital brain phantom. NeuroImage, 2006, 32(1):138-145
|
[35]
|
Shattuck D W, Sandor-Leahy S R, Schaper K A, Rottenberg D A, Leahy R M. Magnetic resonance image tissue classification using a partial volume model. NeuroImage, 2001, 13(5):856-876
|
[36]
|
Martin D, Fowlkes C, Tal D, Malik J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In:Proceedings of the 8th IEEE International Conference on Computer Vision. Vancouver, Canada:IEEE, 2001. 416-423
|
[37]
|
Unnikrishnan R, Pantofaru C, Hebert M. A measure for objective evaluation of image segmentation algorithms. In:Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA:IEEE, 2005. 34
|
[38]
|
Meilă M. Comparing clusterings:an axiomatic view. In:Proceedings of the 22nd International Conference on Machine Learning. New York, USA:ACM, 2005. 577-584
|
[39]
|
Freixenet J, Muoz X, Raba D, Mart J, Cufi X. Yet another survey on image segmentation:region and boundary information integration. In:Proceedings of the 7th European Conference on Computer Vision. Copenhagen, Denmark:Springer, 2002. 408-422
|
[40]
|
Yang A Y, Wright J, Ma Y, Sastry S S. Unsupervised segmentation of natural images via lossy data compression. Computer Vision and Image Understanding, 2008, 110(2):212-225
|