[1]
|
Ross D A, Lim J, Lin R S, Yang M H. Incremental learning for robust visual tracking. International Journal of Computer Vision, 2008, 77(1-3):125-141
|
[2]
|
[2] Mei X, Ling H B. Robust visual tracking and vehicle classification via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11):2259-2272
|
[3]
|
Yang Da-Wei, Cong Yang, Tang Yan-Dong. Object tracking method based on particle filter and sparse representation. Pattern Recognition and Artificial Intelligence, 2013, 26(7):680-687(杨大为, 丛杨, 唐延东. 基于粒子滤波与稀疏表达的目标跟踪方法. 模式识别与人工智能, 2013, 26(7):680-687)
|
[4]
|
Jiang Ming-Xin, Wang Hong-Yu, Wang Jie, Wang Biao. Visual object tracking algorithm based on ML and L2-Norm. Acta Electronica Sinica, 2013, 41(11):2307-2313(姜明新, 王洪玉, 王洁, 王彪. 基于ML和L2范数的视频目标跟踪算法. 电子学报, 2013, 41(11):2307-2313)
|
[5]
|
Qi Mei-Bin, Yang Xun, Yang Yan-Fang, Lu Lei, Jiang Jian-Guo. Real-time object tracking based on L2-norm minimization. Journal of Image and Graphics, 2014, 19(1):36-44(齐美彬, 杨勋, 杨艳芳, 陆磊, 蒋建国. 基于L2范数最小化的实时目标跟踪. 中国图象图形学报, 2014, 19(1):36-44)
|
[6]
|
Wang Zhi-Ling, Chen Zong-Hai, Xu Xiao-Xiao, Wu Liang. A fuzzy region understanding tactic for object tracking based on frog's vision characteristic. Acta Automatica Sinica, 2009, 35(8):1048-1054(王智灵, 陈宗海, 徐萧萧, 吴亮. 基于蛙眼视觉特性的运动目标模糊化区域理解跟踪方法. 自动化学报, 2009, 35(8):1048-1054)
|
[7]
|
Li Zhi-Yong, He Shuang, Liu Jun-Min, Li Ren-Fa. Motion filtering by modelling R3 cell's receptive field in frog eyes. Acta Automatica Sinica, 2015, 41(5):981-990(李智勇, 何霜, 刘俊敏, 李仁发. 基于蛙眼R3细胞感受野模型的运动滤波方法. 自动化学报, 2015, 41(5):981-990)
|
[8]
|
Li Wan-Yi, Wang Peng, Qiao Hong. A survey of visual attention based methods for object tracking. Acta Automatica Sinica, 2014, 40(40):561-576(黎万义, 王鹏, 乔红. 引入视觉注意机制的目标跟踪方法综述. 自动化学报, 2014, 40(4):561-576)
|
[9]
|
[9] Collins R T, Liu Y X, Leordeanu M. Online selection of discriminative tracking features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10):1631-1643
|
[10]
|
Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8):1619-1632
|
[11]
|
Zhang K H, Zhang L, Yang M H. Real-time object tracking via online discriminative feature selection. IEEE Transactions on Image Processing, 2013, 22(12):4664-4677
|
[12]
|
Zhang K H, Zhang L, Yang M H. Real-time compressive tracking. In:Proceedings of the 12th European Conference on Computer Vision. Florence, Italy:IEEE, 2012. 864-877
|
[13]
|
Zhang K H, Zhang L, Yang M H. Fast compressive tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10):2002-2015
|
[14]
|
Achlioptas D. Database-friendly random projections:Johnson-Lindenstrauss with binary coins. Journal of Computer and System Sciences, 2003, 66(4):671-687
|
[15]
|
Baraniuk R, Davenport M, DeVore R, Wakin M. A simple proof of the restricted isometry property for random matrices. Constructive Approximation, 2008, 28(3):253-263
|
[16]
|
Ng A Y, Jordan M I. On discriminative vs. generative classifiers:a comparison of logistic regression and naive Bayes. In Advances in Neural Information Processing Systems. 2002, 14:841-848
|
[17]
|
Diaconis P, Freedman D. Asymptotics of graphical projection pursuit. The Annals of Statistics, 1984, 12(3):793-815
|
[18]
|
Kalal Z, Matas J, Mikolajczyk K. P-N learning:bootstrapping binary classifiers by structural constraints. In:Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, California, USA:IEEE, 2010. 49-56
|
[19]
|
Grabner H, Grabner M, Bischof H. Real-time tracking via on-line boosting. In:Proceedings of the 17th British Machine Vision Association. Edinburgh, UK:IEEE, 2006. 47-56
|
[20]
|
Henriques J F, Caseiro R, Martins P, Batista J. Exploiting the circulant structure of tracking-by-detection with kernels. In:Proceedings of the 12th European Conference on Computer Vision. Florence, Italy:IEEE, 2012. 702-715
|
[21]
|
Kwon J, Lee K M. Visual tracking decomposition. In:Proceedings of the 2000 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, California, USA:IEEE, 2010. 1269-1276
|
[22]
|
Hare S, Saffari A, Torr P H S. Struck:structured output tracking with kernels. In:Proceedings of the 2011 International Conference on Computer Vision. Barcelona, Spain:IEEE, 2011. 263-270
|
[23]
|
Zhong W, Lu H C, Yang M H. Robust object tracking via sparsity-based collaborative model. In:Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, Rhode Island, USA:IEEE, 2012. 1838-1845
|
[24]
|
Collins R T. Mean-shift blob tracking through scale space. In:Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Madison, Wisconsin, USA:IEEE, 2003. II-234-40
|
[25]
|
Kwon J, Lee K M. Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive basin hopping Monte Carlo sampling. In:Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, Florida, USA:IEEE, 2009. 1208-1215
|