2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性不确定系统准最优学习控制

严求真 孙明轩

张维存. 参数不确定离散随机系统的加权多模型自适应控制. 自动化学报, 2015, 41(3): 541-550. doi: 10.16383/j.aas.2015.c140340
引用本文: 严求真, 孙明轩. 非线性不确定系统准最优学习控制. 自动化学报, 2015, 41(9): 1659-1668. doi: 10.16383/j.aas.2015.c140781
ZHANG Wei-Cun. Weighted Multiple Model Adaptive Control of Discrete-time Stochastic System with Uncertain Parameters. ACTA AUTOMATICA SINICA, 2015, 41(3): 541-550. doi: 10.16383/j.aas.2015.c140340
Citation: YAN Qiu-Zhen, SUN Ming-Xuan. Suboptimal Learning Control for Nonlinear Systems with Both Parametric and Nonparametric Uncertainties. ACTA AUTOMATICA SINICA, 2015, 41(9): 1659-1668. doi: 10.16383/j.aas.2015.c140781

非线性不确定系统准最优学习控制

doi: 10.16383/j.aas.2015.c140781
基金项目: 

国家自然科学基金(60874041,61174034,61374103),浙江省高等学校访问学者专业发展项目(FX2013206)资助

详细信息
    作者简介:

    严求真 浙江工业大学信息工程学院博士研究生.主要研究方向为学习控制.E-mail:zjyqz@126.com

    通讯作者:

    孙明轩 浙江工业大学信息工程学院教授.主要研究方向为学习控制.本文通信作者.E-mail:mxsun@zjut.edu.cn

Suboptimal Learning Control for Nonlinear Systems with Both Parametric and Nonparametric Uncertainties

Funds: 

Supported by National Natural Science Foundation of China (60874041, 61174034, 61374103) and University Visiting Scholars Developing Project of Zhejiang Province (FX2013206)

  • 摘要: 针对不确定非线性系统, 提出准最优学习控制方法, 解决参数与非参数不确定特性同时存在情形下的轨迹跟踪问题. 给出迭代学习与重复学习两种控制策略, 根据Sontag公式解决标称系统的优化控制, 并以鲁棒学习手段处理参数与非参数不确定特性. 提出断续函数连续化方案, 以避免传统Sontag公式在实现时可能存在的颤振问题. 分析证明经过足够多次迭代或足够多个周期的重复运行后, 闭环系统可实现系统状态以预设精度跟踪参考信号. 仿真结果表明所设计学习系统在收敛速度 方面快于非优化设计.
  • [1] Arimoto S, Kawamura S, Miyazaki F. Bettering operation of robots by learning. Journal of Robotic Systems, 1984, 1(2): 123-140
    [2] Dixon W E, Zergeroglu E, Dawson D M, Costic B T. Repetitive learning control: a Lyapunov-based approach. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2002, 32(4): 538-545
    [3] Xu J X, Tan Y. A composite energy function-based learning control approach for nonlinear systems with time-varying parametric uncertainties. IEEE Transactions on Automatic Control, 2002, 47(11): 1940-1945
    [4] Chen Wei-Sheng, Wang Yuan-Liang, Li Jun-Min. Adaptive learning control for nonlinearly parameterized systems with periodically time-varying delays. Acta Automatica Sinica, 2008, 34(12): 1556-1560 (陈为胜, 王元亮, 李俊民. 周期时变时滞非线性参数化系统的自适应学习控制. 自动化学报, 2008, 34(12): 1556-1560)
    [5] Yin C K, Xu J X, Hou Z S. A high-order internal model based iterative learning control scheme for nonlinear systems with time-iteration-varying parameters. IEEE Transactions on Automatic Control, 2010, 55(11): 2665-2670
    [6] Tayebi A. Adaptive iterative learning control for robot manipulators. Automatica, 2004, 40(7): 1195-1203
    [7] Xu J X, Xu J. On iterative learning from different tracking tasks in the presence of time-varying uncertainties. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34(1): 589-597
    [8] Ham C, Qu Z H. A new learning control based on the Lyapunov direct method. In: Proceedings of Southcon/94 Conference Record. Orlando, FL: IEEE, 1994. 121-125
    [9] Jin X, Xu J X. Iterative learning control for output-constrained systems with both parametric and nonparametric uncertainties. Automatica, 2013, 49(8): 2508-2516
    [10] Chen Peng-Nian, Qin Hua-Shu. Adaptive tracking control of periodic signals for a class of uncertain nonlinear systems. Journal of Systems Science and Mathematical Sciences, 2009, 29(10): 1343-1352 (陈彭年, 秦化淑. 不确定非线性系统的周期信号自适应跟踪. 系统科学与数学, 2009, 29(10): 1343-1352)
    [11] Marino R, Tomei P, Verrelli C M. Robust adaptive learning control for nonlinear systems with extended matching unstructured uncertainties. International Journal of Robust and Nonlinear Control, 2012, 22(6): 645-675
    [12] Anderson B D O, Moore J B. Optimal Control: Linear Quadratic Methods. Englewood Cliffs, NJ: Prentice-Hall, 1990.
    [13] Xu J X, Tan Y. A suboptimal learning control scheme for non-linear systems with time-varying parametric uncertainties. Optimal Control Applications and Methods, 2001, 22(3): 111-126
    [14] Sontag E D. A Lyapunov-like characterization of asymptotic controllability. SIAM Journal of Control and Optimization, 1989, 21(3): 462-471
    [15] Chen Yi-Mei, Han Zheng-Zhi. Optimal adaptive control of a class of nonlinear uncertain systems. Acta Automatica Sinica, 2006, 32(1): 54-59 (陈奕梅, 韩正之. 一类非线性不确定系统的最优自适应控制. 自动化学报, 2006, 32(1): 54-59)
    [16] Chien C J, Hsu C T, Yao C Y. Fuzzy system-based adaptive iterative learning control for nonlinear plants with initial state errors. IEEE Transactions on Fuzzy Systems, 2004, 12(5): 724-732
    [17] Yan Qiu-Zhen, Sun Ming-Xuan. Error trajectory tracking by robust learning control for nonlinear systems. Control Theory & Applications, 2013, 30(1): 23-30 (严求真, 孙明轩. 一类非线性系统的误差轨迹跟踪鲁棒学习控制算法. 控制理论与应用, 2013, 30(1): 23-30)
    [18] Lv Qing, Fang Yong-Chun, Ren Xiao. Iterative learning control for accelerated inhibition effect of initial state random error. Acta Automatica Sinica, 2014, 40(7): 1295-1302 (吕庆, 方勇纯, 任逍. 加速抑制随机初态误差影响的迭代学习控制. 自动化学报, 2014, 40(7): 1295-1302)
    [19] Sun M X, Wang D W, Chen P N. Repetitive learning control of nonlinear systems over finite intervals. Science in China Series F: Information Sciences, 2010, 53(1): 115-128
    [20] Xu J X, Qu Z H. Robust iterative learning control for a class of nonlinear systems. Automatica, 1998, 34(8): 983-988
    [21] Xu Xin, Shen Dong, Gao Yan-Qing, Wang Kai. Learning control of dynamical systems based on Markov decision processes: research frontiers and outlooks. Acta Automatica Sinica, 2012, 38(5): 673-687 (徐昕, 沈栋, 高岩青, 王凯. 基于马氏决策过程模型的动态系统学习控制: 研究前沿与展望. 自动化学报, 2012, 38(5): 673-687)
    [22] Zhang Li, Liu Shan. Basis function based adaptive iterative learning control for non-minimum phase systems. Acta Automatica Sinica, 2014, 40(12): 2716-2725 (张黎, 刘山. 非最小相位系统的基函数型自适应迭代学习控制. 自动化学报, 2014, 40(12): 2716-2725)
    [23] Sepulchre R, Jankovic M, Kokotovic P V. Constructive Nonlinear Control. New York: Springer, 1997.
    [24] Xu J X. A quasi-optimal sliding mode control scheme based on control Lyapunov function. Journal of the Franklin Institute, 2012, 349(4): 1445-1458
  • 期刊类型引用(12)

    1. 朱亚文,周红标,李杨,徐浩渊. 约束多目标进化算法研究进展. 计算机应用研究. 2022(09): 2582-2590+2602 . 百度学术
    2. 潘子肖,雷德明. 基于问题性质的分布式低碳并行机调度算法研究. 自动化学报. 2020(11): 2427-2438 . 本站查看
    3. 王学武,魏建斌,周昕,顾幸生. 一种基于超体积指标的多目标进化算法. 华东理工大学学报(自然科学版). 2020(06): 780-791 . 百度学术
    4. 张海瑞. 基于LLE降维方法的Pareto优劣性预测. 湖南理工学院学报(自然科学版). 2018(03): 30-35 . 百度学术
    5. 余梓. PCA下的地铁工程项目多目标集成管理分析. 科技资讯. 2018(04): 87-88 . 百度学术
    6. 陈志旺,黄兴旺,陈志兴,赵子铮,黄丽芳. 区间多目标优化非支配排序云模型算法. 计算机工程与应用. 2017(22): 143-149 . 百度学术
    7. 闫红. 基于区间可信度下界的多目标优化算法研究及应用. 计算机科学. 2017(S2): 577-579+585 . 百度学术
    8. 陈志旺,赵子铮,姚嘉楠,韩艳. 昂贵区间多目标优化空间数据挖掘求解策略. 控制与决策. 2017(09): 1599-1606 . 百度学术
    9. 李文彬,贺建军,冯彩英,郭观七. 基于决策空间变换最近邻方法的Pareto支配性预测. 自动化学报. 2017(02): 294-301 . 本站查看
    10. 王晓原,张敬磊,刘振雪,尹超. 基于混合模糊多人多目标非合作博弈的车道选择模型. 自动化学报. 2017(11): 2033-2043 . 本站查看
    11. 陈志旺,黄兴旺,陈志兴,赵子铮. 融合高斯建模和近邻法的区间多目标支配性预测策略. 小型微型计算机系统. 2017(08): 1806-1810 . 百度学术
    12. 丁进良,杨翠娥,陈立鹏,柴天佑. 基于参考点预测的动态多目标优化算法. 自动化学报. 2017(02): 313-320 . 本站查看

    其他类型引用(10)

  • 加载中
计量
  • 文章访问数:  1736
  • HTML全文浏览量:  100
  • PDF下载量:  1314
  • 被引次数: 22
出版历程
  • 收稿日期:  2014-11-13
  • 修回日期:  2015-03-03
  • 刊出日期:  2015-09-20

目录

    /

    返回文章
    返回