2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

球对称n维反应扩散方程的边界观测与输出反馈控制

齐洁 王川 潘峰

齐洁, 王川, 潘峰. 球对称n维反应扩散方程的边界观测与输出反馈控制. 自动化学报, 2015, 41(7): 1356-1364. doi: 10.16383/j.aas.2015.c140741
引用本文: 齐洁, 王川, 潘峰. 球对称n维反应扩散方程的边界观测与输出反馈控制. 自动化学报, 2015, 41(7): 1356-1364. doi: 10.16383/j.aas.2015.c140741
QI Jie, WANG Chuan, PAN Feng. Boundary Observer and Output-feedback Control for a Class of n-dimensional Symmetric Advection-diffusion Equations. ACTA AUTOMATICA SINICA, 2015, 41(7): 1356-1364. doi: 10.16383/j.aas.2015.c140741
Citation: QI Jie, WANG Chuan, PAN Feng. Boundary Observer and Output-feedback Control for a Class of n-dimensional Symmetric Advection-diffusion Equations. ACTA AUTOMATICA SINICA, 2015, 41(7): 1356-1364. doi: 10.16383/j.aas.2015.c140741

球对称n维反应扩散方程的边界观测与输出反馈控制

doi: 10.16383/j.aas.2015.c140741
基金项目: 

国家自然科学基金(61134009, 61104154), 中央高校基本科研业务费专项资金(2232015D3-24, 2232012D3-19)资助

详细信息
    作者简介:

    王川东华大学信息科学与技术学院硕士研究生. 主要研究方向为偏微分方程边界控制, 多智能体系统协同控制.E-mail: 785407617@qq.com

Boundary Observer and Output-feedback Control for a Class of n-dimensional Symmetric Advection-diffusion Equations

Funds: 

Supported by National Natural Science Foundation of China (61134009, 61104154) and Fundamental Research Funds for the Central Universities (2232015D3-24, 2232012D3-19)

  • 摘要: 许多实际系统可用n 维超球坐标系来描述, 并且系统有球对称的性质, 因而可通过研究半径方向的状态变化, 得到系统的全局动态过程. 通过将高维的对称系统转化为等价的径向一维方程, 本文采用边界Backstepping 方法设计了球对称反应扩散方程的输出反馈控制器. 使用容易测量的边界状态值, 设计了状态观测器来估计系统在空间域的所有状态, 从而实现输出反馈控制. 本文扩展了连续Backstepping 方法,提出了n维球坐标的Volterra 积分映射, 从而求出了显式表达的控制器和状态观测器. 论文用Lyapunov 函数法证明了输出反馈系统在H1范数下指数稳定, 表明状态对初值的连续依赖, 确保控制系统具有较好的性质, 不会在空间某点发散. 最后进行了数值仿真, 仿真结果表明系统在输出反馈控制律的作用下收敛到稳态值.
  • [1] Padhi R, Ali S F. An account of chronological developments in control of distributed parameter systems. Annual Reviews in Control, 2009, 33(1): 59-68
    [2] Erturk A, Inman D J. A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. Journal of Vibration and Acoustics, 2008, 130(4): 041002
    [3] Butkovskii A G. The maximum principle for optimum systems with distributed parameters. Automation and Remote Control, 1961, 22(10): 1156-1169
    [4] Triggiani R. Boundary feedback stabilizability of parabolic equations. Applied Mathematics and Optimization, 1980, 6(1): 201-220
    [5] Fard M P, Sagatun S I. Exponential stabilization of a transversely vibrating beam via boundary control. Journal of Sound and Vibration, 2001, 240(4): 613-622
    [6] Li Jian, Liu Yun-Gang. Adaptive boundary control for a class of uncertain heat equations. Acta Automatica Sinica, 2012, 38(3): 469-473 (李健, 刘允刚. 一类不确定热方程自适应边界控制. 自动化学报, 2012, 38(3): 469-473)
    [7] Guo B Z, Kang W. The Lyapunov approach to boundary stabilization of an anti-stable one-dimensional wave equation with boundary disturbance. International Journal of Robust and Nonlinear Control, 2014, 24(1): 54-69
    [8] Rebarber R. Conditions for the equivalence of internal and external stability for distributed parameter systems. IEEE Transactions on Automatic Control, 1993, 38(6): 994-998
    [9] Ge Z Q, Zhu G T, Feng D X. Degenerate semi-group methods for the exponential stability of the first order singular distributed parameter systems. Journal of Systems Science & Complexity, 2008, 21(2): 260-266
    [10] Cheng M B, Radisavljevic V, Su W C. Sliding mode boundary control of a parabolic PDE system with parameter variations and boundary uncertainties. Automatica, 2011, 47(2): 381-387
    [11] Guo B Z, Liu J J. Sliding mode control and active disturbance rejection control to the stabilization of one-dimensional schrödinger equation subject to boundary control matched disturbance. International Journal of Robust and Nonlinear Control, 2014, 24(16): 2194-2212
    [12] Guo B Z, Jin F F. Output feedback stabilization for one-dimensional wave equation subject to boundary disturbance. IEEE Transactions on Automatic Control, 2015, 60(3): 824-830
    [13] Li Shao-Yuan. Model Predictive Control for Global Operating Condition System and Its Implementation. Beijing: Science Press, 2008. (李少远. 全局工况系统预测控制及其应用. 北京: 科学出版社, 2008.)
    [14] Dubljevic S, El-Farra N H, Mhaskar P, Christofides P D. Predictive control of parabolic PDEs with state and control constraints. International Journal of Robust and Nonlinear Control, 2006, 16(16): 749-772
    [15] Luo Yi-Ping, Xia Wen-Hua, Liu Guo-Rong, Deng Fei-Qi. LMI approach to exponential stabilization of distributed parameter control systems with delay. Acta Automatica Sinica, 2009, 35(3): 299-304 (罗毅平, 夏文华, 刘国荣, 邓飞其. 时滞分布参数控制系统指数镇定的LMI方法. 自动化学报, 2009, 35(3): 299-304)
    [16] Krstic M. Systematization of approaches to adaptive boundary stabilization of PDEs. International Journal of Robust and Nonlinear Control, 2006, 16(16): 801-818
    [17] Vazquez R, Krstic M. Boundary observer for output-feedback stabilization of thermaluid convection loop. IEEE Transactions on Control Systems Technology, 2010, 18(4): 789-797
    [18] Li Xiao-Guang, Liu Jin-Kun. Continuum backstepping control algorithms in partial differential equation orientation: a review. Control Theory & Applications, 2012, 29(7): 825-832 (李晓光, 刘金琨. 面向偏微分方程的连续反演控制算法综述. 控制理论与应用, 2012, 29(7): 825-832)
    [19] Smyshev A, Krstic M. Closed-form boundary state feedbacks for a class of 1-D partial integro--differential equations. IEEE Transactions on Automatic Control, 2004, 49(12): 2185-2202
    [20] Krstic M, Smyshev A. Boundary Control of PDEs: A Course on Backstepping Designs. Philadelphia: SIAM, 2008.
    [21] Qi J, Vazquez R, Krstic M. Multi-agent deployment in 3-D via PDE control. IEEE Transactions on Automatic Control, 2015, 60(4): 891-906
    [22] Vazquez R, Krstic M. Control of 1-D parabolic PDEs with Volterra nonlinearities ---Part I: Design. Automatica, 2008, 44(11): 2778-2790
    [23] Xu C, Schuster E, Vazquez E, Krstic M. Stabilization of linearized 2D magnetohydrodynamic channel flow by backstepping boundary control. Systems & Control Letters, 2008, 57 (10): 805-812
    [24] Vazquez R, Schuster E, Krstic M. A Closed-Form Full-State feedback controller for stabilization of 3D magnetohydrodynamic channel flow. Journal of Dynamic Systems, Measurement, and Control, 2009 131: 041001
    [25] Vazquez R, Krstic M. Boundary observer for output-feedback stabilization of thermal-fluid convection loop. IEEE Transactions on Control Systems Technology, 2010, 18(4): 789-797
    [26] Bai Y, Xie C. Temperature control of reaction-diffusion process in ball. In: Proceedings of the 23rd Chinese Control and Decision Conference (CCDC). Mianyang, China, 2011. 2291-2295
    [27] Vazquez R, Krstic M. Explicit boundary control of a reaction-diffusion equation on a disk. In: Proceedings of the 19th World Congress The International Federation of Automatic Control. Cape Town, South Africa: IFAC, 2014. 1562-1567
    [28] Tang K T. Mathematical Methods for Engineers and Scientists. Berlin: Springer-Verlag, 2007. 142-186
    [29] Qi Jie, Qi Jin-Peng. Boundary stabilization for a 2-D reaction-diffusion equation with symmetrical initial data. Acta Automatica Sinica, 2015, 41(1): 209-214 (齐洁, 齐金鹏. 具有对称初始数据的二维反应扩散方程的边界镇定. 自动化学报, 2015, 41(1): 209-214)
    [30] Brezis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. New York: Springer, 2011. 326-328
    [31] Lai M C. A note on finite difference discretizations for Poisson equation on a disk. Numerical Methods for Partial Differential Equations, 2001, 17(3): 199-203
  • 加载中
计量
  • 文章访问数:  1675
  • HTML全文浏览量:  99
  • PDF下载量:  991
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-24
  • 修回日期:  2015-02-27
  • 刊出日期:  2015-07-20

目录

    /

    返回文章
    返回