[1]
|
Kim C. Segmenting a low-depth-of-field image using morphological filters and region merging. IEEE Transactions on Image Processing, 2005, 14(10): 1503-1511
|
[2]
|
Deng Xiao-Ling, Ni Jiang-Qun, Li Zhen, Dai Fen. Foreground extraction from low depth-of-field images based on colour-texture and HOS features. Acta Automatica Sinica, 2013, 39(6): 846-851(邓小玲, 倪江群, 李震, 代芬. 多特征融合的低景深图像前景提取算法. 自动化学报, 2013, 39(6): 846-851)
|
[3]
|
Li H L, Ngan K N. Unsupervized video segmentation with low depth of field. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17(12): 1742-1751
|
[4]
|
Li H L, Ngan K N. Learning to extract focused objects from low DOF images. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(11): 1571-1580
|
[5]
|
Graf F, Kriegel H P, Weiler M. Robust segmentation of relevant regions in low depth of field images. In: Proceedings of the 18th International Conference on Image Processing. Brussels, Belgium: IEEE, 2011. 2861-2864
|
[6]
|
Chen T T, Li H L. Segmenting focused objects based on the amplitude decomposition model. Pattern Recognition Letters, 2012, 33(12): 1536-1542
|
[7]
|
Konik H, Neverova N. Edge-based method for sharp region extraction from low depth of field images. In: Proceedings of the 2002 International Conference on Visual Communications and Image Processing. San Diego, USA: IEEE, 2012. 1-6
|
[8]
|
Mei J Y, Si Y L, Gao H J. A curve evolution approach for unsupervised segmentation of images with low depth of field. IEEE Transactions on Image Processing, 2013, 22(10): 4086 -4095
|
[9]
|
Boykov Y Y, Jolly M P. Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In: Proceedings of the 2001 International Conference on Computer Vision. Vancouver, Canada: IEEE, 2001. 105 -112
|
[10]
|
Liu Song-Tao, Yin Fu-Liang. The basic principle and its new advances of image segmentation methods based on graph cuts. Acta Automatica Sinica, 2012, 38(6): 911-922(刘松涛, 殷福亮. 基于图割的图像分割方法及其新进展. 自动化学报, 2012, 38(6): 911-922)
|
[11]
|
Liu Song-Tao, Wang Hui-Li, Yin Fu-Liang. Interactive ship infrared image segmentation method based on graph cut and fuzzy connectedness. Acta Automatica Sinica, 2012, 38(11): 1735-1750(刘松涛, 王慧丽, 殷福亮. 基于图割和模糊连接度的交互式舰船红 外图像分割方法. 自动化学报, 2012, 38(11): 1735-1750)
|
[12]
|
Zhou H L, Zheng J M, Wei L. Texture aware image segmentation using graph cuts and active contours. Pattern Recognition, 2013, 46(6): 1719-1733
|
[13]
|
Zhang Shi-Hui, Luo Yan-Qing, Kong Ling-Fu. Shadow detection based on graph cuts for a single image. Acta Automatica Sinica, 2014, 40(10): 2306-2315(张世辉, 罗艳青, 孔令富. 基于图割的单幅图像影子检测. 自动化学报, 2014, 40(10): 2306-2315)
|
[14]
|
Wang Hong-Nan, Zhong Wen, Wang Jing, Xia De-Shen. Research of measurement for digital image definition. Journal of Image and Graphics, 2004, 9(7): 828-831(王鸿南, 钟文, 汪静, 夏德深. 基图像清晰度评价方法研究. 中国图象图形学报, 2004, 9(7): 828-831)
|
[15]
|
Marziliano P, Dufaux F, Winkler S, Ebrahimi T. Perceptual blur and ringing metrics: application to JPEG2000. Signal Processing: Image Communication, 2004, 19(2): 163-172
|
[16]
|
Pratt W K. Digital Image Processing. New York: John Wiley and Sons, Inc., 1978. 514
|
[17]
|
Rother C, Kolmogorov V, Blake A. GrabCut: interactive foreground extraction using iterated graph cuts. In: Proceedings of the 31st ACM International Conference on Computer Graphics and Interactive Techniques. Los Angeles, USA: ACM, 2004. 309-314
|
[18]
|
Candemir S, Akgül Y S. Adaptive regularization parameter for graph cut segmentation. In: Proceedings of the 7th International Conference on Image Analysis and Recognition. Póvoa de Varzim, Portugal: Springer, 2010. 117-126
|
[19]
|
Candemir S, Akgül Y S. Statistical significance based graph cut segmentation for shrinking bias. In: Proceedings of the 8th International Conference on Image Analysis and Recognition. Burnaby, Canada: Springer, 2011. 304-313
|
[20]
|
Goldberger J, Gordon S, Greenspan H. An efficient image similarity measure based on approximations of KL-divergence between two Gaussian mixtures. In: Proceedings of the 10th International Conference on Computer Vision and Pattern Recognition. Nice, France: IEEE, 2003. 487-493
|