2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于图割的低景深图像自动分割

刘毅 陈圣磊 冯国富 黄兵 夏德深

谢昭, 童昊浩, 孙永宣, 吴克伟. 一种仿生物视觉感知的视频轮廓检测方法. 自动化学报, 2015, 41(10): 1814-1824. doi: 10.16383/j.aas.2015.c150018
引用本文: 刘毅, 陈圣磊, 冯国富, 黄兵, 夏德深. 基于图割的低景深图像自动分割. 自动化学报, 2015, 41(8): 1471-1481. doi: 10.16383/j.aas.2015.c140734
XIE Zhao, TONG Hao-Hao, SUN Yong-Xuan, WU Ke-Wei. Dynamic Contour Detection Inspired by Biological Visual Perception. ACTA AUTOMATICA SINICA, 2015, 41(10): 1814-1824. doi: 10.16383/j.aas.2015.c150018
Citation: LIU Yi, CHEN Sheng-Lei, FENG Guo-Fu, HUANG Bing, XIA De-Shen. Automatic Segmentation of Images with Low Depth of Field Based on Graph Cuts. ACTA AUTOMATICA SINICA, 2015, 41(8): 1471-1481. doi: 10.16383/j.aas.2015.c140734

基于图割的低景深图像自动分割

doi: 10.16383/j.aas.2015.c140734
基金项目: 

国家自然科学基金(61473157), 江苏省高校自然科学研究项目(13KJ B520013, 14KJB520019)资助

详细信息
    作者简介:

    陈圣磊 博士,南京审计学院副教授,澳大利亚莫纳什大学信息技术学院兼职研究员.主要研究方向为数据挖掘与机器学习.E-mail:tristan_chen@126.com

Automatic Segmentation of Images with Low Depth of Field Based on Graph Cuts

Funds: 

Supported by National Natural Science Foundation of China (61473157) and Natural Science Foundation of the Jiangsu Higher Education Institutions of China (13KJB520013, 14KJB5 20019)

  • 摘要: 结合图割算法,提出了一种针对低景深(Depth of field, DOF)图像的自动分割模型.首先,通过改进的点锐度算法得到图像的点锐度图, 并结合图像的颜色特征,得到一个四维的特征向量.其次, 通过对图像点锐度图强边缘的计算,利用图像清晰部分边缘较连续, 模糊部分边缘较弱、连续性较差的特点得到图像初步的前景/背景区域. 然后,对前景/背景的颜色和点锐度特征进行高斯混合模型(Gaussian mixture model, GMM)建模,结合全局、局部自适应的λ值,对图割算法的Shrinking bias 现象进行改善.最后,通过迭代的图割算法对前景/背景区域进行修正. 实验结果表明,该模型鲁棒性较高,分割结果更加精确.
  • [1] Kim C. Segmenting a low-depth-of-field image using morphological filters and region merging. IEEE Transactions on Image Processing, 2005, 14(10): 1503-1511
    [2] Deng Xiao-Ling, Ni Jiang-Qun, Li Zhen, Dai Fen. Foreground extraction from low depth-of-field images based on colour-texture and HOS features. Acta Automatica Sinica, 2013, 39(6): 846-851(邓小玲, 倪江群, 李震, 代芬. 多特征融合的低景深图像前景提取算法. 自动化学报, 2013, 39(6): 846-851)
    [3] Li H L, Ngan K N. Unsupervized video segmentation with low depth of field. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17(12): 1742-1751
    [4] Li H L, Ngan K N. Learning to extract focused objects from low DOF images. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(11): 1571-1580
    [5] Graf F, Kriegel H P, Weiler M. Robust segmentation of relevant regions in low depth of field images. In: Proceedings of the 18th International Conference on Image Processing. Brussels, Belgium: IEEE, 2011. 2861-2864
    [6] Chen T T, Li H L. Segmenting focused objects based on the amplitude decomposition model. Pattern Recognition Letters, 2012, 33(12): 1536-1542
    [7] Konik H, Neverova N. Edge-based method for sharp region extraction from low depth of field images. In: Proceedings of the 2002 International Conference on Visual Communications and Image Processing. San Diego, USA: IEEE, 2012. 1-6
    [8] Mei J Y, Si Y L, Gao H J. A curve evolution approach for unsupervised segmentation of images with low depth of field. IEEE Transactions on Image Processing, 2013, 22(10): 4086 -4095
    [9] Boykov Y Y, Jolly M P. Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In: Proceedings of the 2001 International Conference on Computer Vision. Vancouver, Canada: IEEE, 2001. 105 -112
    [10] Liu Song-Tao, Yin Fu-Liang. The basic principle and its new advances of image segmentation methods based on graph cuts. Acta Automatica Sinica, 2012, 38(6): 911-922(刘松涛, 殷福亮. 基于图割的图像分割方法及其新进展. 自动化学报, 2012, 38(6): 911-922)
    [11] Liu Song-Tao, Wang Hui-Li, Yin Fu-Liang. Interactive ship infrared image segmentation method based on graph cut and fuzzy connectedness. Acta Automatica Sinica, 2012, 38(11): 1735-1750(刘松涛, 王慧丽, 殷福亮. 基于图割和模糊连接度的交互式舰船红 外图像分割方法. 自动化学报, 2012, 38(11): 1735-1750)
    [12] Zhou H L, Zheng J M, Wei L. Texture aware image segmentation using graph cuts and active contours. Pattern Recognition, 2013, 46(6): 1719-1733
    [13] Zhang Shi-Hui, Luo Yan-Qing, Kong Ling-Fu. Shadow detection based on graph cuts for a single image. Acta Automatica Sinica, 2014, 40(10): 2306-2315(张世辉, 罗艳青, 孔令富. 基于图割的单幅图像影子检测. 自动化学报, 2014, 40(10): 2306-2315)
    [14] Wang Hong-Nan, Zhong Wen, Wang Jing, Xia De-Shen. Research of measurement for digital image definition. Journal of Image and Graphics, 2004, 9(7): 828-831(王鸿南, 钟文, 汪静, 夏德深. 基图像清晰度评价方法研究. 中国图象图形学报, 2004, 9(7): 828-831)
    [15] Marziliano P, Dufaux F, Winkler S, Ebrahimi T. Perceptual blur and ringing metrics: application to JPEG2000. Signal Processing: Image Communication, 2004, 19(2): 163-172
    [16] Pratt W K. Digital Image Processing. New York: John Wiley and Sons, Inc., 1978. 514
    [17] Rother C, Kolmogorov V, Blake A. GrabCut: interactive foreground extraction using iterated graph cuts. In: Proceedings of the 31st ACM International Conference on Computer Graphics and Interactive Techniques. Los Angeles, USA: ACM, 2004. 309-314
    [18] Candemir S, Akgül Y S. Adaptive regularization parameter for graph cut segmentation. In: Proceedings of the 7th International Conference on Image Analysis and Recognition. Póvoa de Varzim, Portugal: Springer, 2010. 117-126
    [19] Candemir S, Akgül Y S. Statistical significance based graph cut segmentation for shrinking bias. In: Proceedings of the 8th International Conference on Image Analysis and Recognition. Burnaby, Canada: Springer, 2011. 304-313
    [20] Goldberger J, Gordon S, Greenspan H. An efficient image similarity measure based on approximations of KL-divergence between two Gaussian mixtures. In: Proceedings of the 10th International Conference on Computer Vision and Pattern Recognition. Nice, France: IEEE, 2003. 487-493
  • 期刊类型引用(20)

    1. 巩彬,安爱民,石耀科,杜先君. 基于IMODA自适应深度信念网络的复杂模拟电路故障诊断方法. 电子科技大学学报. 2024(03): 327-344 . 百度学术
    2. 金亮,闫银刚,杨庆新,刘素贞,张闯. 小样本条件下永磁同步电机深度迁移学习性能预测方法. 电工技术学报. 2023(18): 4921-4931 . 百度学术
    3. 朱小勇,陈胜. 基于ResNet-ViT的海战多目标态势感知. 信息与控制. 2023(05): 638-647 . 百度学术
    4. 吴智怀,王志伟. 基于SDAE的液压泵故障诊断方法研究. 冶金设备. 2023(05): 15-22 . 百度学术
    5. 李锦键,王兴贵,杨维满,赵玲霞. 基于改进递归深度信念网络的CSP电站短期出力预测. 太阳能学报. 2022(07): 225-232 . 百度学术
    6. 沈浩宇,江先志,冯涛. 二轮平衡车的神经元控制算法及仿真. 机床与液压. 2022(19): 159-166 . 百度学术
    7. 王功明,乔俊飞,关丽娜,贾庆山. 深度信念网络研究现状与展望. 自动化学报. 2021(01): 35-49 . 本站查看
    8. 石媛媛,裴志利,姜明洋. 基于深度信念网络的文本分类研究综述. 内蒙古民族大学学报(自然科学版). 2021(01): 44-50 . 百度学术
    9. 李娜娜,胡坚剑,顾军华,张亚娟. 深度置信网络优化模型在人才评价中的应用. 计算机工程. 2020(02): 80-87+102 . 百度学术
    10. 唐魏,郑源,潘虹,徐晶珺. 引入动态调节学习率的SAE轴承故障诊断研究. 计算机工程与应用. 2020(20): 264-269 . 百度学术
    11. 李少波,李传江,胡建军,张安思,杨静. 基于深度置信网络的机械设备故障诊断研究综述. 现代制造工程. 2020(10): 156-162+142 . 百度学术
    12. 史科,陆阳,刘广亮,毕翔,王辉. 基于多隐层Gibbs采样的深度信念网络训练方法. 自动化学报. 2019(05): 975-984 . 本站查看
    13. 高磊,范冰冰,黄穗. 基于残差的改进卷积神经网络图像分类算法. 计算机系统应用. 2019(07): 139-144 . 百度学术
    14. 张德,李国璋,王怀光,张峻宁. 位姿估计自适应学习率的改进. 电子测量与仪器学报. 2019(06): 51-58 . 百度学术
    15. 邢海霞,程乐. 一种基于强化学习的深度信念网络设计方法. 控制工程. 2019(11): 2115-2120 . 百度学术
    16. 索明何,程乐. 基于PLSR的深度信念网输出权值确定方法. 控制工程. 2018(04): 668-676 . 百度学术
    17. 王功明,乔俊飞,王磊. 一种能量函数意义下的生成式对抗网络. 自动化学报. 2018(05): 793-803 . 本站查看
    18. 牟善仲,徐天赐,符奥,王萌,白茹. 基于自适应深度学习模型的变压器故障诊断方法. 南方电网技术. 2018(10): 14-19 . 百度学术
    19. 刘冰尧,庞腾,雷菊阳. 基于深度信念网络的变压器故障诊断. 化工自动化及仪表. 2018(11): 873-878 . 百度学术
    20. 王献锋,张传雷,张善文,朱义海. 基于自适应判别深度置信网络的棉花病虫害预测. 农业工程学报. 2018(14): 157-164 . 百度学术

    其他类型引用(31)

  • 加载中
计量
  • 文章访问数:  1667
  • HTML全文浏览量:  117
  • PDF下载量:  2054
  • 被引次数: 51
出版历程
  • 收稿日期:  2014-10-22
  • 修回日期:  2015-04-11
  • 刊出日期:  2015-08-20

目录

    /

    返回文章
    返回