2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离散线性一致性算法噪声问题研究

窦全胜 丛玲 姜平 史忠植

潘超, 刘建国, 李峻林. 昆虫视觉启发的光流复合导航方法. 自动化学报, 2015, 41(6): 1102-1112. doi: 10.16383/j.aas.2015.c120936
引用本文: 窦全胜, 丛玲, 姜平, 史忠植. 离散线性一致性算法噪声问题研究. 自动化学报, 2015, 41(7): 1328-1340. doi: 10.16383/j.aas.2015.c140698
PAN Chao, LIU Jian-Guo, LI Jun-Lin. An Optical Flow-based Composite Navigation Method Inspired by Insect Vision. ACTA AUTOMATICA SINICA, 2015, 41(6): 1102-1112. doi: 10.16383/j.aas.2015.c120936
Citation: DOU Quan-Sheng, CONG Ling, JIANG Ping, SHI Zhong-Zhi. Research on Discrete Linear Consensus Algorithm with Noises. ACTA AUTOMATICA SINICA, 2015, 41(7): 1328-1340. doi: 10.16383/j.aas.2015.c140698

离散线性一致性算法噪声问题研究

doi: 10.16383/j.aas.2015.c140698
基金项目: 

图家重点基础研究发展计划(973计划) (2013CB329502),国家自然科学基金(61272244, 611750532, 61173173, 61035003, 61202212)资助

详细信息
    作者简介:

    丛玲山东师范大学信息科学与工程学院硕士研究生. 主要研究方向为群体智能. E-mail: clfighting@sina.com

Research on Discrete Linear Consensus Algorithm with Noises

Funds: 

Supported by National Basic Research Program of China (973 Program) (2013CB329502) and National Natural Science Foundation of China (61272244, 611750532, 61173173, 61035003, 612 02212)

  • 摘要: 多智能体一致性问题在传感网、社交网、协同控制等诸多领域有着广泛的实际应用背景, 本文对离散线性一致性算法的噪声问题进行了研究, 证明了离散线性 一致性算法的噪声不可控性; 提出基于抑噪算子ε(t)的噪声控制策略, 指出当ε(t)为t-0.5的高阶无穷小时, 抑噪后的一致性算法噪声可控; 分析了抑噪算子对一致性 算法收敛性的影响, 证明了在无噪声条件下, 当抑噪算子ε(t为t-1的低阶无穷小时, 抑噪后的一致性算法依然可以使Agent收敛至原收敛状态x*.在上述结论基础上进一步指出, 当t→∞ 时, 若抑噪算子ε(t)的阶在t-0.5~t-1之间, 所有Agent 的状态将以原收敛状态x* 为中心呈正态分布. 最后, 以DHA 为例对相应理论结果进行了验证和讨论. 本文为线性一致性算法的噪声控制提供了理论依据, 对抑噪算s子的确定有较强的指导意义.
  • [1] Reynolds C W. Flocks, herds and schools: a distributed behavioral model. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques. New York, USA: ACM, 1987. 25-34
    [2] Vicsek T, Czirok A, Ben-Jacob E, Cohen I, Shochet O. Novel type of phase transition in a system of self-driven particles. Physical Review Letters, 1995, 75(6): 1226-1229
    [3] Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 2003, 48(6): 988 -1001
    [4] Benediktsson J A, Swain P H. Consensus theoretic classification methods. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 1992, 22(4): 688-704
    [5] Moreau L. Stability of multiagent systems with time-dependent communication links. IEEE Transactions on Automatic Control, 2005, 50(2): 169-182
    [6] Li Z K, Duan Z S, Chen G R, Huang L. Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010, 57(1): 213-224
    [7] Li Z, Duan Z, Chen G. Dynamic consensus of linear multi-agent systems. IET Control Theory and Applications, 2011, 5(1): 19-28
    [8] Li Z K, Liu X D, Ren W, Xie L H. Distributed tracking control for linear multiagent systems with a leader of bounded unknown input. IEEE Transactions on Automatic Control, 2013, 58(2): 518-523
    [9] Wen G H, Duan Z S, Li Z K, Chen G R. Consensus and its L2-gain performance of multi-agent systems with intermittent information transmissions. International Journal of Control, 2012, 85(4): 384-396
    [10] Wen G H, Duan Z S, Li Z K, Chen G R. Flocking of multi-agent dynamical systems with intermittent nonlinear velocity measurements. International Journal of Robust and Nonlinear Control, 2012, 22(16): 1790-1805
    [11] Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, 95(1): 215-233
    [12] Olfati-Saber R. Evolutionary dynamics of behavior in social networks. In: Proceedings of the 46th IEEE Conference on Decision and Control. New Orleans, LA: IEEE, 2007. 4051-4056
    [13] Olfati-Saber R, Jalalkamali P. Coupled distributed estimation and control for mobile sensor networks. IEEE Transactions on Automatic Control, 2012, 57(10): 2609-2614
    [14] Olfati-Saber R. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Transactions on Automatic Control, 2006, 51(3): 401-420
    [15] Yu C H, Nagpal R. A self-adaptive framework for modular robots in a dynamic environment: theory and applications. The International Journal of Robotics Research, 2011, 30(8): 1015-1036
    [16] Yu C H. Biologically-Inspired Control for Self-Adaptive Multiagent Systems [Ph.D. dissertation], Harvard University, USA, 2010.
    [17] Yu C H, Nagpal R. Biologically-inspired control for multi-agent self-adaptive tasks. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence. Atlanta: AAAI, 2010. 1702-1709
    [18] Tran T M D, Kibangou A Y. Distributed design of finite-time average consensus protocols. In: Proceedings of the 2013 IFAC Workshop on Distributed Estimation and Control in Networked Systems. Rhine Moselle Hall, Koblenz, Germany: IFAC, 2013. 227-233
    [19] Wen G G, Penga Z X, Rahmania A, Yu Y G. Distributed leader-following consensus for second-order multi-agent systems with nonlinear inherent dynamics. International Journal of Systems Science, 2014, 45(9): 1892-1901
    [20] Wen G G, Yu Y G, Peng Z X, Rahmani A. Distributed consensus tracking for second-order nonlinear multiagent systems with a specified reference state. Mathematical Problems in Engineering, 2014, 2014: Article ID 320687, doi: 10.1155/2014/320687
    [21] Lu X Q, Lu R Q, Chen S H, Lu J H. Finite-time distributed tracking control for multi-agent systems with a virtual leader. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60(2) 352-362
    [22] Busoniu L, Morarescu I C. Consensus for agents with general dynamics using optimistic optimization. In: Proceedings of the 52nd IEEE Annual Conference on Decision and Control (CDC-13). Florence, Italy: IEEE, 2013. 6735-6740
    [23] Long Y S, Liu S, Xie L H. Distributed consensus of discrete-time multi-agent systems with multiplicative noises. International Journal of Robust and Nonlinear Control, 2014, doi: 10.1002/rnc.3253
    [24] Min Hai-Bo, Liu Yuan, Wang Shi-Cheng, Sun Fu-Chun. An overview on coordination control problem of multi-agent system. Acta Automatica Sinica, 2012, 38(10): 1557-1570(闵海波, 刘源, 王仕成, 孙富春. 多个体协调控制问题综述. 自动化学报, 2012, 38(10): 1557-1570)
    [25] Sun Y G. Mean square consensus for uncertain multiagent systems with noises and delays. Abstract and Applied Analysis, 2012, 2012: Article ID 621060, doi: 10.1155/2012/ 621060
    [26] Huang M Y, Manton J H. Stochastic approximation for consensus seeking: mean square and almost sure convergence. In: Proceedings of the 46th IEEE Conference on Decision and Control. New Orleans LA: IEEE, 2007. 306-311
    [27] Huang M Y, Manton J H. Stochastic consensus seeking with noisy and directed inter-agent communication: fixed and randomly varying topologies. IEEE Transactions on Automatic Control, 2010, 55(1): 235-241
  • 期刊类型引用(15)

    1. 耿艳利,刘松岳,王希瑞,宣伯凯. 电动下肢假肢多路况控制策略研究. 中国康复医学杂志. 2024(02): 226-231 . 百度学术
    2. 汪晓铭,黎林荣,陈长龙,孙洁,张哲文,孟巧玲,喻洪流. 人-机-环境共融的智能假肢膝关节研究进展. 中国生物医学工程学报. 2023(04): 486-501 . 百度学术
    3. 韩亚丽,韩子,金壮壮,徐闽海,吴应达. 一种主动型踝关节助力外骨骼设计及性能实验. 仪器仪表学报. 2023(11): 109-118 . 百度学术
    4. 刘克平,滕召纬,孙中波,李婉婷. 基于自适应模糊神经网络的下肢关节角度估计. 计算机仿真. 2022(09): 456-461 . 百度学术
    5. 盛敏,唐少波. 融合统计和几何特征的运动意图识别方法. 安庆师范大学学报(自然科学版). 2021(01): 34-39 . 百度学术
    6. 刘作军,许长寿,陈玲玲,张燕. 智能假肢膝关节的研发要点及其研究进展综述. 包装工程. 2021(10): 54-63 . 百度学术
    7. 崔建伟,李志钢,曹尔凡,杜韩,陆普东. 基于人体上肢运动信息的助残手抓取意图识别方法. 中国惯性技术学报. 2021(02): 250-255 . 百度学术
    8. 刘磊,杨鹏,刘作军,宋寅卯. 基于多核学习极限学习机的助行机器人运动相容性识别. 高技术通讯. 2021(09): 978-985 . 百度学术
    9. 苏本跃,倪钰,盛敏,赵丽丽. 基于改进卷积神经网络的动力下肢假肢运动意图识别. 控制与决策. 2021(12): 3031-3038 . 百度学术
    10. 黄品高,黄剑平,黄博俊,方鹏,刘志远,李光林. 实现下肢假肢智能仿生控制的神经功能重建及行走意图识别方法. 中国科学基金. 2021(S1): 227-235 . 百度学术
    11. 滕召纬,孙中波,刘克平. 基于自适应模糊神经网络的下肢关节运动意图估计. 长春工业大学学报. 2020(06): 558-562 . 百度学术
    12. 盛敏,刘双庆,王婕,苏本跃. 基于GMM-HMM模型的智能下肢假肢运动意图识别. 仪器仪表学报. 2019(05): 169-178 . 百度学术
    13. 刘双庆. 基于LSTM深度学习模型的智能下肢假肢运动意图识别. 合肥学院学报(综合版). 2019(05): 96-104 . 百度学术
    14. 杨帆,王远,郭鹏程. 针对下肢残障人士的无障碍卫浴产品设计分析. 工业设计. 2019(11): 48-49 . 百度学术
    15. 刘磊,陈增强,杨鹏,刘作军. 采用鱼群算法进化极限学习机的假肢步态识别. 振动.测试与诊断. 2019(06): 1225-1231+1360-1361 . 百度学术

    其他类型引用(22)

  • 加载中
计量
  • 文章访问数:  1745
  • HTML全文浏览量:  106
  • PDF下载量:  1134
  • 被引次数: 37
出版历程
  • 收稿日期:  2014-10-09
  • 修回日期:  2015-02-02
  • 刊出日期:  2015-07-20

目录

    /

    返回文章
    返回