2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于线性滤波的树结构动态规划立体匹配算法

储珺 龚文 缪君 张桂梅

储珺, 龚文, 缪君, 张桂梅. 基于线性滤波的树结构动态规划立体匹配算法. 自动化学报, 2015, 41(11): 1941-1950. doi: 10.16383/j.aas.2015.c140693
引用本文: 储珺, 龚文, 缪君, 张桂梅. 基于线性滤波的树结构动态规划立体匹配算法. 自动化学报, 2015, 41(11): 1941-1950. doi: 10.16383/j.aas.2015.c140693
CHU Jun, GONG Wen, MIAO Jun, ZHANG Gui-Mei. A Tree Structure Dynamic Programming Stereo Matching Algorithm Based on Linear Filtering. ACTA AUTOMATICA SINICA, 2015, 41(11): 1941-1950. doi: 10.16383/j.aas.2015.c140693
Citation: CHU Jun, GONG Wen, MIAO Jun, ZHANG Gui-Mei. A Tree Structure Dynamic Programming Stereo Matching Algorithm Based on Linear Filtering. ACTA AUTOMATICA SINICA, 2015, 41(11): 1941-1950. doi: 10.16383/j.aas.2015.c140693

基于线性滤波的树结构动态规划立体匹配算法

doi: 10.16383/j.aas.2015.c140693
基金项目: 

国家自然科学基金(61263046,61462065),江西省自然科学基金(20122BAB201037)资助

详细信息
    作者简介:

    龚文 南昌航空大学航空软件学院硕士研究生.主要研究方向为计算机视觉与图像处理.E-mail:gongwen@nchu.edu.cn

    缪君 南昌航空大学航空制造工程学院讲师.主要研究方向为计算机视觉与图像处理.E-mail:miaojun@nchu.edu.cn

    张桂梅 南昌航空大学航空制造工程学院教授.主要研究方向为图像处理,计算机视觉与模式识别.E-mail:zhangguimei@nchu.edu.cn

    通讯作者:

    储珺 南昌航空大学软件学院教授.主要研究方向为图像处理与计算机视觉.本文通信作者.E-mail:chuj@nchu.edu.cn

A Tree Structure Dynamic Programming Stereo Matching Algorithm Based on Linear Filtering

Funds: 

Supported by National Natural Science Foundation of China (61263046, 61462065), Natural Science Foundation of Jiangxi Province (20122BAB201037)

  • 摘要: 传统的动态规划立体匹配算法能有效保证匹配精度的同时提高运行速度, 但得到的视差深度图会出现明显的条纹现象,同时在图像弱纹理区域以及边缘存在较高的误匹配. 针对该问题,提出了一种新的基于线性滤波的树形结构动态规划立体匹配算法. 算法首先运用改进的结合颜色和梯度信息参数可调的自适应测度函数构建左右图像的匹配代价, 然后以左图像为引导图对构建的匹配代价进行滤波; 再运用行列双向树形结构的动态规划算法进行视差全局优化, 最后进行视差求精得到最终的视差图.理论分析和实验结果都表明, 本文的算法能有效地改善动态规划算法的条纹现象以及弱纹理区域和边缘存在的误匹配.
  • [1] [2] Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 2002, 47(1-3):7-42
    [2] Zheng Zhi-Gang, Wang Zeng-Fu. A region based stereo matching algorithm using cooperative optimization. Acta Automatica Sinica, 2009, 35(5):469-477(郑志刚, 汪增福. 基于区域间协同优化的立体匹配算法. 自动化学报, 2009, 35(5):469-477)
    [3] [4] Yoon K J, Kweon I S. Adaptive support-weight approach for correspondence search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4):650-656
    [4] Li De-Guang, Li Ke-Jie, Gao Li-Li. Stereo vision using multiresolution and multiorientation phase matching. Chinese Journal of Scientific Instrument, 2004, 25(4S):600-602(李德广, 李科杰, 高丽丽. 基于多尺度多方向相位匹配的立体视觉方法. 仪器仪表学报, 2004, 25(4S):600-602)
    [5] [6] Klaus A, Sormann M, Karner K. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In:Proceedings of the 18th International Conference on Pattern Recognition. Hong Kong, China:IEEE, 2006. 15-18
    [6] [7] Wang H Q, Wu M, Zhang Y B, Zhang L. Effective stereo matching using reliable points based graph cut. In:Proceedings of the 2013 Visual Communications and Image Processing. Kuching:IEEE, 2013. 1-6
    [7] [8] Kim J C, Lee K M, Choi B T, Lee S U. A dense stereo matching using two-pass dynamic programming with generalized ground control points. In:Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA:IEEE, 2005. 1075-1082
    [8] [9] Xu Z L, Ma L Z, Kimachi M, Suwa M. Efficient contrast invariant stereo correspondence using dynamic programming with vertical constraint. The Visual Computer, 2008, 24(1):45-55
    [9] Veksler O. Stereo correspondence by dynamic programming on a tree. In:Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA:IEEE, 2005. 384-390
    [10] Rhemann C, Hosni A, Bleyer M, Rother C, Gelautz M. Fast cost-volume filtering for visual correspondence and beyond. In:Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI:IEEE, 2011. 3017-3024
    [11] Bleyer M, Gelautz M. Simple but effective tree structures for dynamic programming-based stereo matching. In:Proceedings of the Third International Conference on Computer Vision Theory and Applications. Madeira, Portugal:2008. 2
    [12] Hirschmuller H, Scharstein D. Evaluation of stereo matching costs on images with radiometric differences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(9):1582-1599
    [13] Hu T B, Qi B J, Wu T, Xu X, He H G. Stereo matching using weighted dynamic programming on a single-direction four-connected tree. Computer Vision and Image Understanding, 2012, 116(8):908-921
    [14] Zhang Li-Min, Zhou Shang-Bo. Feature matching of scale invariant feature transform images based on fractional differential approach. Journal of Computer Applications, 2011, 31(4):1019-1023(张丽敏, 周尚波. 基于分数阶微分的尺度不变特征变换图像匹配算法. 计算机应用, 2011, 31(4):1019-1023)
  • 加载中
计量
  • 文章访问数:  2274
  • HTML全文浏览量:  115
  • PDF下载量:  997
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-10
  • 修回日期:  2015-08-09
  • 刊出日期:  2015-11-20

目录

    /

    返回文章
    返回