[1]
|
[2] Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 2002, 47(1-3):7-42
|
[2]
|
Zheng Zhi-Gang, Wang Zeng-Fu. A region based stereo matching algorithm using cooperative optimization. Acta Automatica Sinica, 2009, 35(5):469-477(郑志刚, 汪增福. 基于区域间协同优化的立体匹配算法. 自动化学报, 2009, 35(5):469-477)
|
[3]
|
[4] Yoon K J, Kweon I S. Adaptive support-weight approach for correspondence search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4):650-656
|
[4]
|
Li De-Guang, Li Ke-Jie, Gao Li-Li. Stereo vision using multiresolution and multiorientation phase matching. Chinese Journal of Scientific Instrument, 2004, 25(4S):600-602(李德广, 李科杰, 高丽丽. 基于多尺度多方向相位匹配的立体视觉方法. 仪器仪表学报, 2004, 25(4S):600-602)
|
[5]
|
[6] Klaus A, Sormann M, Karner K. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In:Proceedings of the 18th International Conference on Pattern Recognition. Hong Kong, China:IEEE, 2006. 15-18
|
[6]
|
[7] Wang H Q, Wu M, Zhang Y B, Zhang L. Effective stereo matching using reliable points based graph cut. In:Proceedings of the 2013 Visual Communications and Image Processing. Kuching:IEEE, 2013. 1-6
|
[7]
|
[8] Kim J C, Lee K M, Choi B T, Lee S U. A dense stereo matching using two-pass dynamic programming with generalized ground control points. In:Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA:IEEE, 2005. 1075-1082
|
[8]
|
[9] Xu Z L, Ma L Z, Kimachi M, Suwa M. Efficient contrast invariant stereo correspondence using dynamic programming with vertical constraint. The Visual Computer, 2008, 24(1):45-55
|
[9]
|
Veksler O. Stereo correspondence by dynamic programming on a tree. In:Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA:IEEE, 2005. 384-390
|
[10]
|
Rhemann C, Hosni A, Bleyer M, Rother C, Gelautz M. Fast cost-volume filtering for visual correspondence and beyond. In:Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI:IEEE, 2011. 3017-3024
|
[11]
|
Bleyer M, Gelautz M. Simple but effective tree structures for dynamic programming-based stereo matching. In:Proceedings of the Third International Conference on Computer Vision Theory and Applications. Madeira, Portugal:2008. 2
|
[12]
|
Hirschmuller H, Scharstein D. Evaluation of stereo matching costs on images with radiometric differences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(9):1582-1599
|
[13]
|
Hu T B, Qi B J, Wu T, Xu X, He H G. Stereo matching using weighted dynamic programming on a single-direction four-connected tree. Computer Vision and Image Understanding, 2012, 116(8):908-921
|
[14]
|
Zhang Li-Min, Zhou Shang-Bo. Feature matching of scale invariant feature transform images based on fractional differential approach. Journal of Computer Applications, 2011, 31(4):1019-1023(张丽敏, 周尚波. 基于分数阶微分的尺度不变特征变换图像匹配算法. 计算机应用, 2011, 31(4):1019-1023)
|