[1]
|
Li S Z. Markov Random Field Modeling in Image Analysis. London: Springer, 2009.
|
[2]
|
Blake A, Kohli P, Rother C. Markov Random Fields for Vision and Image Processing. Cambridge: MIT Press, 2011.
|
[3]
|
Blake A, Kohli P, Rother C [Author], Xie Zhao [Translator]. Markov Random Fields for Vision and Image Processing. Beijing: Science Press, 2014.(Blake A, Kohli P, Rother C [著], 谢昭 [译]. Markov随机场在视觉和图像处理中的应用. 北京: 科学出版社, 2014.)
|
[4]
|
Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(11): 1222-1239
|
[5]
|
Kolmogorov V, Zabin R. What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 147-159
|
[6]
|
Felzenszwalb P F, Huttenlocher D P. Efficient belief propagation for early vision. International Journal of Computer Vision, 2006, 70(1): 41-54
|
[7]
|
Weiss Y, Freeman W T. On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs. IEEE Transactions on Information Theory, 2001, 47(2): 736-744
|
[8]
|
Murphy K P, Weiss Y, Jordan M I. Loopy belief propagation for approximate inference: an empirical study. In: Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 1999. 467-475
|
[9]
|
Wainwright M J, Jaakkola T S, Willsky A S. Map estimation via agreement on trees: message-passing and linear programming. IEEE Transactions on Information Theory, 2005, 51(11): 3697-3717
|
[10]
|
Kolmogorov V. Convergent tree-reweighted message passing for energy minimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(10): 1568-1583
|
[11]
|
Kolmogorov V, Wainwright M J. On the optimality of tree-reweighted max-product message-passing. In: Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence. 2012.
|
[12]
|
Wainwright M J, Jordan M I. Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 2008, 1(1-2): 1-305
|
[13]
|
Szeliski R, Zabih R, Scharstein D, Veksler O, Kolmogorov V, Agarwala A, Tappen M, Rother C. A comparative study of energy minimization methods for Markov random fields with smoothness-based priors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(6): 1068-1080
|
[14]
|
Koller D, Friedman N. Probabilistic Graphical Models: Principles and Techniques. Cambridge: MIT Press, 2009.
|
[15]
|
Bishop C. Pattern Recognition and Machine Learning. New York: Springer, 2006.
|
[16]
|
Jordan M I, Ghahramani Z, Jaakkola T S, Saul L K. An introduction to variational methods for graphical models. Machine Learning, 1999, 37(2): 183-233
|
[17]
|
Lauritzen S L. Graphical Models. Oxford: Oxford University Press, 1996.
|
[18]
|
Besag J. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society. Series B (Methodological), 1974, 36(2): 192-236
|
[19]
|
Loeliger H A. An introduction to factor graphs. IEEE Signal Processing Magazine, 2004, 21(1): 28-41
|
[20]
|
Kschischang F R, Frey B J, Loeliger H A. Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory, 2001, 47(2): 498-519
|
[21]
|
Szeliski R, Zabih R, Scharstein D, Veksler O, Kolmogorov V, Agarwala A, Tappen M, Rother C. A comparative study of energy minimization methods for Markov random fields. In: Proceedings of the 9th European Conference on Computer Vision, Computer Vision-ECCV 2006. Graz, Austria: Springer, 2006. 16-29
|
[22]
|
Greig D M, Porteous B T, Seheult A H. Exact maximum a posteriori estimation for binary images. Journal of the Royal Statistical Society. Series B (Methodological), 1989, 51(2): 271-279
|
[23]
|
Tappen M F, Freeman W T. Comparison of graph cuts with belief propagation for stereo, using identical MRF parameters. In: Proceedings of the 9th IEEE International Conference on Computer Vision, 2003. Nice, France: IEEE, 2003. 900-906
|
[24]
|
Woodford O J, Torr P H S, Reid I D, Fitzgibbon A W. Global stereo reconstruction under second order smoothness priors. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008). Anchorage, AK: IEEE, 2008. 1-8
|
[25]
|
Vicente S, Kolmogorov V, Rother C. Graph cut based image segmentation with connectivity priors. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008). Anchorage, AK: IEEE, 2008. 1-8
|
[26]
|
Nowozin S, Lampert C H. Global connectivity potentials for random field models. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition(CVPR 2009). Miami, FL: IEEE, 2009. 818-825
|
[27]
|
Bleyer M, Rother C, Kohli P, Scharstein D, Sinha S. Object stereo ---joint stereo matching and object segmentation. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI: IEEE, 2011. 3081-3088
|
[28]
|
Lempitsky V, Kohli P, Rother C, Sharp T. Image segmentation with a bounding box prior. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto: IEEE, 2009. 277-284
|
[29]
|
Kohli P, Kumar M P, Torr P H S. P3 & beyond: move making algorithms for solving higher order functions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(9): 1645-1656
|
[30]
|
Kohli P, Kumar M P, Torr P H S. P3 & beyond: solving energies with higher order cliques. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'07). Minneapolis, MN: IEEE, 2007. 1-8
|
[31]
|
Kohli P, Ladický L, Torr P H S. Robust higher order potentials for enforcing label consistency. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008). Anchorage, AK: IEEE, 2008. 1-8
|
[32]
|
Kohli P, Ladický L, Torr P H S. Robust higher order potentials for enforcing label consistency. International Journal of Computer Vision, 2009, 82(3): 302-324
|
[33]
|
Ladický L, Russell C, Kohli P, Torr P H S. Associative hierarchical random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(6): 1056-1077
|
[34]
|
Ladický L, Russell C, Kohli P, Torr P H S. Associative hierarchical CRFs for object class image segmentation. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto: IEEE, 2009. 739-746
|
[35]
|
Rother C, Kohli P, Feng W, Jia J Y. Minimizing sparse higher order energy functions of discrete variables. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition(CVPR 2009). Miami, FL: IEEE, 2009. 1382-1389
|
[36]
|
Komodakis N, Paragios N. Beyond pairwise energies: efficient optimization for higher-order MRFs. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009). Miami, FL: IEEE, 2009. 2985-2992
|
[37]
|
Boix X, Gonfaus J M, van de Weijer J, Bagdanov A D, Serrat J, González J. Harmony potentials. International Journal of Computer Vision, 2012, 96(1): 83-102
|
[38]
|
Gonfaus J M, Boix X, Van de Weijer J, Bagdanov A D, Serrat J, Gonzalez J. Harmony potentials for joint classification and segmentation. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA: IEEE, 2010. 3280-3287
|
[39]
|
Ladický L, Russell C, Kohli P, Torr P H S. Graph cut based inference with co-occurrence statistics. In: Proceedings of the 11th European Conference on Computer Vision, Computer Vision-ECCV 2010. Heraklion, Crete, Greece: Springer, 2010. 239-253
|
[40]
|
Ladický L, Russell C, Kohli P, Torr P H S. Inference methods for CRFs with co-occurrence statistics. International Journal of Computer Vision, 2013, 103(2): 213-225
|
[41]
|
Werner T. High-arity interactions, polyhedral relaxations, and cutting plane algorithm for soft constraint optimisation (MAP-MRF). In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008). Anchorage, AK: IEEE, 2008. 1-8
|
[42]
|
Lim Y, Jung K, Kohli P. Energy minimization under constraints on label counts. In: Proceedings of the 11th European Conference on Computer Vision, Computer Vision-ECCV 2010. Heraklion, Crete, Greece: Springer, 2010. 535-551
|
[43]
|
Delong A, Osokin A, Isack H N, Boykov Y. Fast approximate energy minimization with label costs. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA: IEEE, 2010. 2173-2180
|
[44]
|
Delong A, Osokin A, Isack H N, Boykov Y. Fast approximate energy minimization with label costs. International Journal of Computer Vision, 2012, 96(1): 1-27
|
[45]
|
Shekhovtsov, Kohli P, Rother C. Curvature prior for mrf-based segmentation and shape inpainting. In: Proceedings of the Joint 34th DAGM and 36th OAGM, Pattern Recognition, Lecture Notes in Computer Science Volume 7476. Berlin Heidelberg: Springer, 2012. 41-51
|
[46]
|
Woodford O, Torr P, Reid I, Fitzgibbon A. Global stereo reconstruction under second-order smoothness priors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12): 2115-2128
|
[47]
|
Silberman N, Hoiem D, Kohli P, Fergus R. Indoor segmentation and support inference from RGBD images. In: Proceedings of the 12th European Conference on Computer Vision, Computer Vision-ECCV 2012. Florence, Italy: Springer, 2012. 746-760
|
[48]
|
Ladický L, Sturgess P, Russell C, Sengupta S, Bastanlar Y, Clocksin W, Torr P H S. Joint optimization for object class segmentation and dense stereo reconstruction. International Journal of Computer Vision, 2012, 100(2): 122-133
|
[49]
|
Kim B S, Sun M, Kohli P, Savarese S. Relating things and stuff by high-order potential modeling. In: Proceedings of the 2012 Computer Vision-ECCV. Workshops and Demonstrations. Berlin, Heidelberg: Springer, 2012. 293-304
|
[50]
|
Sun M, Kim B S, Kohli P, Savarese S. Relating things and stuff via object property interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1370-1383
|
[51]
|
Ladický L, Sturgess P, Alahari K, Russell C, Torr P H S. What, where and how many? Combining object detectors and CRFs. In: Proceedings of the 11th European Conference on Computer Vision, Computer Vision-ECCV 2010. Heraklion, Crete, Greece: Springer, 2010. 424-437
|
[52]
|
Brostow G J, Shotton J, Fauqueur J, Cipolla R. Segmentation and recognition using structure from motion point clouds. In: Proceedings of the 10th European Conference on Computer Vision, Computer Vision-ECCV 2008. Marseille, France: Springer, 2008. 44-57
|
[53]
|
Floros G, Leibe B. Joint 2d-3d temporally consistent semantic segmentation of street scenes. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI: IEEE, 2012. 2823-2830
|
[54]
|
Shotton J, Winn J, Rother C, Criminisi A. Textonboost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context. International Journal of Computer Vision, 2009, 81(1): 2-23
|
[55]
|
Shotton J, Winn J, Rother C, Criminisi A. Textonboost: joint appearance, shape and context modeling for multi-class object recognition and segmentation. In: Proceedings of the 9th European Conference on Computer Vision, Computer Vision-ECCV 2006. Graz, Austria: Springer, 2006. 1-15
|
[56]
|
Chris R, L'ubor L, Pushmeet K, Philip HS T. Exact and approximate inference in associative hierarchical networks using graph cuts. arXiv preprint arXiv: 1203.3512, 2012.
|
[57]
|
Russell C, Ladický L, Kohli P, Torr P H S. Exact and approximate inference in associative hierarchical networks using graph cuts. In: UAI. AUAI Press, 2010. 501-508
|
[58]
|
Kohli P, Kumar M P. Energy minimization for linear envelope MRFs. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA: IEEE, 2010. 1863-1870
|
[59]
|
Gould S. Max-margin learning for lower linear envelope potentials in binary Markov random fields. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11). Omnipress, 2011. 193-200
|
[60]
|
Lempitsky V, Rother C, Blake A. LogCut-efficient graph cut optimization for Markov random fields. In: Proceedings of the 11th IEEE International Conference on Computer Vision (ICCV 2007). Rio de Janeiro: IEEE, 2007. 1-8
|
[61]
|
Lempitsky V, Rother C, Roth S, Blake A. Fusion moves for Markov random field optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8): 1392-1405
|
[62]
|
Werner T. Revisiting the linear programming relaxation approach to gibbs energy minimization and weighted constraint satisfaction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8): 1474-1488
|
[63]
|
Kolmogorov V, Rother C. Minimizing nonsubmodular functions with graph cuts ---a review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(7): 1274-1279
|
[64]
|
Boros E, Hammer P L. Pseudo-boolean optimization. Discrete Applied Mathematics, 2002, 123(1-3): 155-225
|
[65]
|
Boros E, Hammer P L, Tavares G. Preprocessing of Unconstrained Quadratic Binary Optimization. Technical Report RRR 10-2006, RUTCOR, 2006.
|
[66]
|
Rother C, Kolmogorov V, Lempitsky V, Szummer M. Optimizing binary MRFs via extended roof duality. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'07). Minneapolis, MN: IEEE, 2007. 1-8
|
[67]
|
Rosenberg I G. Reduction of bivalent maximization to the quadratic case. Cahiers du Centre d'Etudes de Recherche Opérationnelle, 1975, 17: 71-74
|
[68]
|
Ishikawa H. Higher-order clique reduction in binary graph cut. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009). Miami, FL: IEEE, 2009. 2993-3000
|
[69]
|
Ishikawa H. Transformation of general binary MRF minimization to the first-order case. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(6): 1234-1249
|
[70]
|
Freedman D, Drineas P. Energy minimization via graph cuts: settling what is possible. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005). San Diego, CA, USA: IEEE, 2005. 939-946
|
[71]
|
Gallagher A C, Batra D, Parikh D. Inference for order reduction in Markov random fields. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI: IEEE, 2011. 1857-1864
|
[72]
|
Fix A, Gruber A, Boros E, Zabih R. A graph cut algorithm for higher-order Markov random fields. In: Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV). Barcelona: IEEE, 2011. 1020-1027
|
[73]
|
Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo: Morgan Kaufmann, 1988.
|
[74]
|
Lan X Y, Roth S, Huttenlocher D, Black M J. Efficient belief propagation with learned higher-order Markov random fields. In: Proceedings of the 9th European Conference on Computer Vision, Computer Vision-ECCV 2006. Graz, Austria: Springer, 2006. 269-282
|
[75]
|
Potetz B. Efficient belief propagation for vision using linear constraint nodes. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'07). Minneapolis, MN: IEEE, 2007. 1-8
|
[76]
|
Potetz B, Lee T S. Efficient belief propagation for higher-order cliques using linear constraint nodes. Computer Vision and Image Understanding, 2008, 112(1): 39-54
|
[77]
|
Tarlow D, Givoni I E, Zemel R S. Hop-map: efficient message passing with high order potentials. In: Proceedings of the 13th Conference on Artificial Intelligence and Statistics. 2010. 812-819
|
[78]
|
McAuley J J, Caetano T S. Faster algorithms for max-product message-passing. The Journal of Machine Learning Research, 2011, 12: 1349-1388
|
[79]
|
Felzenszwalb P F, McAuley J J. Fast inference with min-sum matrix product. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2549-2554
|
[80]
|
Komodakis N, Tziritas G, Paragios N. Fast, approximately optimal solutions for single and dynamic MRFs. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'07). Minneapolis, MN: IEEE, 2007. 1-8
|
[81]
|
Bertsekas D P. Nonlinear Programming (2nd Edition). Belmont, Mass: Athena Scientific, 1999.
|
[82]
|
Vazirani V V. Approximation Algorithms. Berlin, Heidelberg: Springer, 2001.
|
[83]
|
Kovalevsky V A, Koval V K. A diffusion algorithm for decreasing energy of max-sum labeling problem. Glushkov Institute of Cybernetics, Kiev, USSR, 1975.
|
[84]
|
Werner T. A linear programming approach to max-sum problem: a review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(7): 1165-1179
|
[85]
|
Komodakis N, Paragios N, Tziritas G. MRF optimization via dual decomposition: message-passing revisited. In: Proceedings of the 11th IEEE International Conference on Computer Vision (ICCV 2007). Rio de Janeiro: IEEE, 2007. 1-8
|
[86]
|
Komodakis N, Paragios N, Tziritas G. MRF energy minimization and beyond via dual decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 531-552
|
[87]
|
Swoboda P, Savchynskyy B, Kappes J H, Schnörr C. Partial optimality by pruning for map-inference with general graphical models. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR'14. Washington D.C., USA: IEEE Computer Society, 2014. 1170-1177
|
[88]
|
Komodakis N, Paragios N. Beyond loose Lp-relaxations: optimizing MRFs by repairing cycles. In: Proceedings of the 10th European Conference on Computer Vision, Computer Vision-ECCV 2008. Marseille, France: Springer, 2008. 806-820
|
[89]
|
Kumar M P, Torr P H S. Efficiently solving convex relaxations for map estimation. In: Proceedings of the 25th International Conference on Machine Learning. New York: ACM, 2008. 680-687
|
[90]
|
Sontag D, Jaakkola Y S. New outer bounds on the marginal polytope. In: Proceedings of the 2007 Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2007. 1393-1400
|
[91]
|
Sontag D, Meltzer T, Globerson A, Jaakkola T S, Weiss Y. Tightening LP relaxations for MAP using message passing. In: Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence. 2012.
|
[92]
|
Andres B, Kappes J H, Köthe U, Schnörr C, Hamprecht F A. An empirical comparison of inference algorithms for graphical models with higher order factors using openGM. In: Proceedings of the 32nd DAGM Symposium, Pattern Recognition. Darmstadt, Germany: Springer, 2010. 353-362
|
[93]
|
Kappes J H, Andres B, Hamprecht F A, Schnorr C, Nowozin S, Batra D, Kim S, Kausler B X, Lellmann J, Komodakis N, Rother C. A comparative study of modern inference techniques for discrete energy minimization problems. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Portland, OR: IEEE, 2013. 1328-1335
|
[94]
|
Andres B, Beier T, Kappes J H. Opengm: A C++ library for discrete graphical models. arXiv Preprint arXiv: 1206. 0111, 2012.
|
[95]
|
Scharstein D, Chris P. Learning conditional random fields for stereo. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'07). Minneapolis, MN: IEEE, 2007. 1-8
|
[96]
|
Taskar B, Guestrin C, Roller D. Max-margin Markov networks. Advances in Neural Information Processing Systems, 2004, 16: 25
|
[97]
|
Finley T, Joachims T. Training structural SVMs when exact inference is intractable. In: Proceedings of the 25th International Conference on Machine Learning. New York: ACM, 2008. 304-311
|
[98]
|
Li Y P, Huttenlocher D P. Learning for stereo vision using the structured support vector machine. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008). Anchorage, AK: IEEE, 2008. 1-8
|
[99]
|
Tsochantaridis I, Hofmann T, Joachims T, Altun Y. Support vector machine learning for interdependent and structured output spaces. In: Proceedings of the 21st International Conference on Machine Learning. New York: ACM, 2004. 104
|
[100]
|
Yang L, Meer P, Foran D J. Multiple class segmentation using a unified framework over mean-shift patches. In: Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'07). Minneapolis, MN: IEEE, 2007. 1-8
|
[101]
|
Pantofaru C, Schmid C, Hebert M. Object recognition by integrating multiple image segmentations. In: Proceedings of the 10th European Conference on Computer Vision, Computer Vision-ECCV 2008. Marseille, France: Springer, 2008. 481-494
|
[102]
|
Russell B C, Freeman W T, Efros A A, Sivic J, Zisserman A. Using multiple segmentations to discover objects and their extent in image collections. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006. 1605-1614
|
[103]
|
Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619
|
[104]
|
Torralba A, Murphy K P, Freeman W T. Sharing features: efficient boosting procedures for multiclass object detection. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2004). Washington D.C., USA: IEEE, 2004. II-762-II-769
|
[105]
|
Boykov Y Y, Jolly M P. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: Proceedings of the 8th IEEE International Conference on Computer Vision (ICCV 2001). Vancouver, BC: IEEE, 2001. 105-112
|
[106]
|
Felzenszwalb P F, Girshick R B, McAllester D, Ramanan D. Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645
|
[107]
|
Maji S, Malik J. Object detection using a max-margin Hough transform. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009). Miami, FL: IEEE, 2009. 1038-1045
|
[108]
|
Larlus D, Jurie F. Combining appearance models and Markov random fields for category level object segmentation. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008). Anchorage, AK: IEEE, 2008. 1-7
|
[109]
|
Hoiem D, Efros A A, Hebert M. Closing the loop in scene interpretation. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2008). Anchorage, AK: IEEE, 2008. 1-8
|
[110]
|
Li C C, Kowdle A, Saxena A, Chen T. Towards holistic scene understanding: feedback enabled cascaded classification models. In: Proceedings of the 2010 Advances in Neural Information Processing Systems. 2010. 1351-1359
|
[111]
|
Gould S, Gao T S, Koller D. Region-based segmentation and object detection. In: Proceeding of the 2009 Advances in Neural Information Processing Systems. 2009. 655-663
|
[112]
|
Wojek C, Schiele B. A dynamic conditional random field model for joint labeling of object and scene classes. In: Proceedings of the 10th European Conference on Computer Vision, Computer Vision-ECCV 2008. Marseille, France: Springer, 2008. 733-747
|
[113]
|
Everingham M, Van Gool L, Williams C K I, Winn J, Zisserman A. The pascal visual object classes (VOC) challenge. International Journal of Computer Vision, 2010, 88(2): 303-338
|
[114]
|
Yao J, Fidler S, Urtasun R. Describing the scene as a whole: joint object detection, scene classification and semantic segmentation. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI: IEEE, 2012. 702-709
|
[115]
|
Sturgess P, Alahari K, Ladický L, Torr P H S. Combining appearance and structure from motion features for road scene understanding. In: Proceedings of the 2009 British Machine Vision Association (BMVC 2009).
|
[116]
|
Roig G, Boix X, Ben Shitrit H, Fua P. Conditional random fields for multi-camera object detection. In: Proceedings of the 2011 IEEE International Conference on Computer Vision (ICCV). Barcelona: IEEE, 2011. 563-570
|