2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两两关系马尔科夫网的自适应组稀疏化学习

刘建伟 任正平 刘泽宇 黎海恩 罗雄麟

刘建伟, 任正平, 刘泽宇, 黎海恩, 罗雄麟. 两两关系马尔科夫网的自适应组稀疏化学习. 自动化学报, 2015, 41(8): 1419-1437. doi: 10.16383/j.aas.2015.c140682
引用本文: 刘建伟, 任正平, 刘泽宇, 黎海恩, 罗雄麟. 两两关系马尔科夫网的自适应组稀疏化学习. 自动化学报, 2015, 41(8): 1419-1437. doi: 10.16383/j.aas.2015.c140682
LIU Jian-Wei, REN Zheng-Ping, LIU Ze-Yu, LI Hai-En, LUO Xiong-Lin. Adaptive Group Sparse Learning of Pairwise Markov Network. ACTA AUTOMATICA SINICA, 2015, 41(8): 1419-1437. doi: 10.16383/j.aas.2015.c140682
Citation: LIU Jian-Wei, REN Zheng-Ping, LIU Ze-Yu, LI Hai-En, LUO Xiong-Lin. Adaptive Group Sparse Learning of Pairwise Markov Network. ACTA AUTOMATICA SINICA, 2015, 41(8): 1419-1437. doi: 10.16383/j.aas.2015.c140682

两两关系马尔科夫网的自适应组稀疏化学习

doi: 10.16383/j.aas.2015.c140682
基金项目: 

中国石油大学(北京)基础学科研究基金项目(JCXK-2011-07)资助

详细信息
    作者简介:

    任正平 中国石油大学(北京)地球物理与信息工程学院硕士研究生.主要研究方向为机器学习.E-mail:renzhengping1225@sina.com

Adaptive Group Sparse Learning of Pairwise Markov Network

Funds: 

Supported by Foundation Sciences China University of Petroleum (JCXK-2011-07)

  • 摘要: 稀疏化学习能显著降低无向图模型的参数学习与结构学习的复杂性, 有效地处理无向图模型的学习问题. 两两关系马尔科夫网在多值变量情况下, 每条边具有多个参数, 本文对此给出边参数向量的组稀疏化学习, 提出自适应组稀疏化, 根据参数向量的模大小自适应调整惩罚程度. 本文不仅对比了不同边势情况下的稀疏化学习性能, 为了加速模型在复杂网络中的训练过程, 还对目标函数进行伪似然近似、平均场自由能近似和Bethe自由能近似. 本文还给出自适应组稀疏化目标函数分别使用谱投影梯度算法和投 影拟牛顿算法时的最优解, 并对比了两种优化算法进行稀疏化学习的性能. 实验表明自适 应组稀疏化具有良好的性能.
  • [1] Liu Jian-Wei, Li Hai-En, Luo Xiong-Lin. Learning technique of probabilistic graphical models: a review. Acta Automatica Sinica, 2014, 40(6): 1025-1044(刘建伟, 黎海恩, 罗雄麟. 概率图模型学习技术研究进展. 自动化学报, 2014, 40(6): 1025-1044)
    [2] Liu Jian-Wei, Li Hai-En, Luo Xiong-Lin. Representation theory of probabilistic graphical models. Computer Science, 2014, 41(9): 1-17(刘建伟, 黎海恩, 罗雄麟. 概率图模型表示理论. 计算机科学, 2014, 41(9): 1-17)
    [3] Liu Jian-Wei, Cui Li-Peng, Luo Xiong-Lin. Survey on the sparse learning of probabilistic graphical models. Chinese Journal of Computers, 2014, 37: Online Publishing No.114 (刘建伟, 崔立鹏, 罗雄麟. 概率图模型的稀疏化学习综述. 计算机学报, 2014, 37: 在线出版号No.114)
    [4] Schmidt M. Graphical Model Structure Learning with L1 Regularization [Ph.D. dissertation], The University of British Columbia, Vancouver, BC, 2010
    [5] Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2006, 68(1): 49-67
    [6] Huang J Z, Zhang T. The benefit of group sparsity. The Annals of Statistics, 2010, 38(4): 1978-2004
    [7] Schlüter F. A survey on independence-based Markov networks learning. Artificial Intelligence Review, 2014, 42(4): 1069-1093
    [8] Lee K, Anguelov D, Sumengen B, Gokturk S B. Markov random field models for hair and face segmentation. In: Proceedings of 8th IEEE International Conference on Automatic Face and Gesture Recognition. Amsterdam, The Netherlands: IEEE, 2008. 1-6
    [9] Amizadeh S, Hauskrecht M. Latent variable model for learning in pairwise Markov networks. In: Proceedings of the 2010 AAAI Conference on Artificial Intelligence. Atlanta, Georgia, USA: AAAI, 2010. 382-387
    [10] Zhang X H, Saha A, Vishwanathan S V N. Accelerated training of max-margin Markov networks with kernels. Theoretical Computer Science, 2014, 519: 88-102
    [11] Lee S I, Ganapathi V, Koller D. Efficient structure learning of Markov networks using L1-regularization. In: Proceedings of the 20th Annual Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada, 2007. 817-824
    [12] Wang H S, Leng C L. A note on adaptive group lasso. Computational Statistics and Data Analysis, 2008, 52(12): 5277-5286
    [13] Wei F R, Huang J. Consistent group selection in high-dimensional linear regression. Bernoulli: Official Journal of the Bernoulli Society for Mathematical Statistics and Probability, 2010, 16(4): 1369-1384
    [14] Besag J. Efficiency of pseudolikelihood estimation for simple Gaussian fields. Biometrika, 1977, 64(3): 616-618
    [15] Kok S, Domingos P. Learning the structure of Markov logic networks. In: Proceedings of the 22nd International Conference on Machine Learning. Bonn, Germany: ACM, 2005. 441-448
    [16] Campbell N D F, Subr K, Kautz J. Fully-connected CRFs with non-parametric pairwise potential. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Portland, OR, USA: IEEE, 2013. 1658-1665
    [17] Yedidia J S, Freeman W T, Weiss Y. Constructing free-energy approximations and generalized belief propagation algorithms. IEEE Transactions on Information Theory, 2005, 51(7): 2282-2312
    [18] Wainwright M J, Jordan M I. Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 2008, 1(1-2): 1-305
    [19] Zhu J, Lao N, Xing E P. Grafting-light: fast, incremental feature selection and structure learning of Markov random fields. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington D.C., USA: ACM, 2010. 303-312
    [20] Lee S, Zhu J, Xing E P. Adaptive multi-task lasso: with application to eQTL detection. In: Proceedings of 24th Annual Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada, 2010. 1306-1314
    [21] Cheng Qiang, Chen Feng, Dong Jian-Wu, Xu Wen-Li. Variational approximate inference methods for graphical models. Acta Automatica Sinica, 2012, 38(11): 1721-1734 (程强, 陈峰, 董建武, 徐文立. 概率图模型中的变分近似推理方法. 自动化学报, 2012, 38(11): 1721-1734)
    [22] Li Hai-En, Liu Jian-Wei, Luo Xiong-Lin Variational approximate inference for probabilistic graphical models. In: Proceeding of the 2013 Chinese Intelligent Automation Conference (4). Yangzhou, Jiangsu, China, 2013. (黎海恩, 刘建伟, 罗雄麟. 概率图模型的变分近似推理. 见: 2013年中国智能自动化学术会议论文集(第四分册). 扬州, 江苏, 中国, 2013.)
    [23] Yedidia J S, Freeman W T, Weiss Y. Constructing free-energy approximations and generalized belief propagation algorithms. IEEE Transactions on Information Theory, 2005, 51(7): 2282-2312
    [24] Sun S L. A review of deterministic approximate inference techniques for Bayesian machine learning. Neural Computing and Applications, 2013, 23(7-8): 2039-2050
    [25] Györfi L, Györfi Z, Vajda I. Bayesian decision with rejection. Problems of Control and Information Theory, 1979, 8(5-6): 445-452
    [26] Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2006, 68(1): 49-67
    [27] Birgin E, Martínez J, Raydan M. Nonmonotone spectral projected gradient methods on convex sets. SIAM Journal on Optimization, 2000, 10(4): 1196-1211
    [28] Yu Z S. Solving bound constrained optimization via a new nonmonotone spectral projected gradient method. Applied Numerical Mathematics, 2008, 58(9): 1340-1348
    [29] Fu W J. Penalized regressions: the bridge versus the lasso. Journal of Computational and Graphical Statistics, 1998, 7(3): 397-416
    [30] Schmidt M, van den Berg E, Friedlander M P, Murphy K. Optimizing costly functions with simple constraints: a limited-memory projected quasi-Newton algorithm. In: Proceedings of the 12th International Conference on Artificial Intelligence and Statistics. Clearwater Beach, Florida, USA, 2009. 456-463
    [31] Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 2011, 3(1): 1-122
  • 加载中
计量
  • 文章访问数:  1874
  • HTML全文浏览量:  114
  • PDF下载量:  1546
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-24
  • 修回日期:  2015-02-16
  • 刊出日期:  2015-08-20

目录

    /

    返回文章
    返回