[1]
|
Liu Jian-Wei, Li Hai-En, Luo Xiong-Lin. Learning technique of probabilistic graphical models: a review. Acta Automatica Sinica, 2014, 40(6): 1025-1044(刘建伟, 黎海恩, 罗雄麟. 概率图模型学习技术研究进展. 自动化学报, 2014, 40(6): 1025-1044)
|
[2]
|
Liu Jian-Wei, Li Hai-En, Luo Xiong-Lin. Representation theory of probabilistic graphical models. Computer Science, 2014, 41(9): 1-17(刘建伟, 黎海恩, 罗雄麟. 概率图模型表示理论. 计算机科学, 2014, 41(9): 1-17)
|
[3]
|
Liu Jian-Wei, Cui Li-Peng, Luo Xiong-Lin. Survey on the sparse learning of probabilistic graphical models. Chinese Journal of Computers, 2014, 37: Online Publishing No.114 (刘建伟, 崔立鹏, 罗雄麟. 概率图模型的稀疏化学习综述. 计算机学报, 2014, 37: 在线出版号No.114)
|
[4]
|
Schmidt M. Graphical Model Structure Learning with L1 Regularization [Ph.D. dissertation], The University of British Columbia, Vancouver, BC, 2010
|
[5]
|
Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2006, 68(1): 49-67
|
[6]
|
Huang J Z, Zhang T. The benefit of group sparsity. The Annals of Statistics, 2010, 38(4): 1978-2004
|
[7]
|
Schlüter F. A survey on independence-based Markov networks learning. Artificial Intelligence Review, 2014, 42(4): 1069-1093
|
[8]
|
Lee K, Anguelov D, Sumengen B, Gokturk S B. Markov random field models for hair and face segmentation. In: Proceedings of 8th IEEE International Conference on Automatic Face and Gesture Recognition. Amsterdam, The Netherlands: IEEE, 2008. 1-6
|
[9]
|
Amizadeh S, Hauskrecht M. Latent variable model for learning in pairwise Markov networks. In: Proceedings of the 2010 AAAI Conference on Artificial Intelligence. Atlanta, Georgia, USA: AAAI, 2010. 382-387
|
[10]
|
Zhang X H, Saha A, Vishwanathan S V N. Accelerated training of max-margin Markov networks with kernels. Theoretical Computer Science, 2014, 519: 88-102
|
[11]
|
Lee S I, Ganapathi V, Koller D. Efficient structure learning of Markov networks using L1-regularization. In: Proceedings of the 20th Annual Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada, 2007. 817-824
|
[12]
|
Wang H S, Leng C L. A note on adaptive group lasso. Computational Statistics and Data Analysis, 2008, 52(12): 5277-5286
|
[13]
|
Wei F R, Huang J. Consistent group selection in high-dimensional linear regression. Bernoulli: Official Journal of the Bernoulli Society for Mathematical Statistics and Probability, 2010, 16(4): 1369-1384
|
[14]
|
Besag J. Efficiency of pseudolikelihood estimation for simple Gaussian fields. Biometrika, 1977, 64(3): 616-618
|
[15]
|
Kok S, Domingos P. Learning the structure of Markov logic networks. In: Proceedings of the 22nd International Conference on Machine Learning. Bonn, Germany: ACM, 2005. 441-448
|
[16]
|
Campbell N D F, Subr K, Kautz J. Fully-connected CRFs with non-parametric pairwise potential. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Portland, OR, USA: IEEE, 2013. 1658-1665
|
[17]
|
Yedidia J S, Freeman W T, Weiss Y. Constructing free-energy approximations and generalized belief propagation algorithms. IEEE Transactions on Information Theory, 2005, 51(7): 2282-2312
|
[18]
|
Wainwright M J, Jordan M I. Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 2008, 1(1-2): 1-305
|
[19]
|
Zhu J, Lao N, Xing E P. Grafting-light: fast, incremental feature selection and structure learning of Markov random fields. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington D.C., USA: ACM, 2010. 303-312
|
[20]
|
Lee S, Zhu J, Xing E P. Adaptive multi-task lasso: with application to eQTL detection. In: Proceedings of 24th Annual Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada, 2010. 1306-1314
|
[21]
|
Cheng Qiang, Chen Feng, Dong Jian-Wu, Xu Wen-Li. Variational approximate inference methods for graphical models. Acta Automatica Sinica, 2012, 38(11): 1721-1734 (程强, 陈峰, 董建武, 徐文立. 概率图模型中的变分近似推理方法. 自动化学报, 2012, 38(11): 1721-1734)
|
[22]
|
Li Hai-En, Liu Jian-Wei, Luo Xiong-Lin Variational approximate inference for probabilistic graphical models. In: Proceeding of the 2013 Chinese Intelligent Automation Conference (4). Yangzhou, Jiangsu, China, 2013. (黎海恩, 刘建伟, 罗雄麟. 概率图模型的变分近似推理. 见: 2013年中国智能自动化学术会议论文集(第四分册). 扬州, 江苏, 中国, 2013.)
|
[23]
|
Yedidia J S, Freeman W T, Weiss Y. Constructing free-energy approximations and generalized belief propagation algorithms. IEEE Transactions on Information Theory, 2005, 51(7): 2282-2312
|
[24]
|
Sun S L. A review of deterministic approximate inference techniques for Bayesian machine learning. Neural Computing and Applications, 2013, 23(7-8): 2039-2050
|
[25]
|
Györfi L, Györfi Z, Vajda I. Bayesian decision with rejection. Problems of Control and Information Theory, 1979, 8(5-6): 445-452
|
[26]
|
Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2006, 68(1): 49-67
|
[27]
|
Birgin E, Martínez J, Raydan M. Nonmonotone spectral projected gradient methods on convex sets. SIAM Journal on Optimization, 2000, 10(4): 1196-1211
|
[28]
|
Yu Z S. Solving bound constrained optimization via a new nonmonotone spectral projected gradient method. Applied Numerical Mathematics, 2008, 58(9): 1340-1348
|
[29]
|
Fu W J. Penalized regressions: the bridge versus the lasso. Journal of Computational and Graphical Statistics, 1998, 7(3): 397-416
|
[30]
|
Schmidt M, van den Berg E, Friedlander M P, Murphy K. Optimizing costly functions with simple constraints: a limited-memory projected quasi-Newton algorithm. In: Proceedings of the 12th International Conference on Artificial Intelligence and Statistics. Clearwater Beach, Florida, USA, 2009. 456-463
|
[31]
|
Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 2011, 3(1): 1-122
|